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Abstract—The ability to quickly acquire 3D models is an
essential capability needed in many disciplines including robotics,
computer vision, geodesy, and architecture. In this paper we
present a novel method for real-time camera tracking and 3D
reconstruction of static indoor environments using an RGB-D
sensor. We show that by representing the geometry with a
signed distance function (SDF), the camera pose can be efficiently
estimated by directly minimizing the error of the depth images
on the SDF. As the SDF contains the distances to the surface for
each voxel, the pose optimization can be carried out extremely
fast. By iteratively estimating the camera poses and integrating
the RGB-D data in the voxel grid, a detailed reconstruction of an
indoor environment can be achieved. We present reconstructions
of several rooms using a hand-held sensor and from onboard an
autonomous quadrocopter. Our extensive evaluation on publicly
available benchmark data shows that our approach is more ac-
curate and robust than the iterated closest point algorithm (ICP)
used by KinectFusion, and yields often a comparable accuracy at
much higher speed to feature-based bundle adjustment methods
such as RGB-D SLAM for up to medium-sized scenes.

I. INTRODUCTION

3D simultaneous localization and mapping (SLAM) is a
highly active research area as it is a pre-requisite for many
robotic tasks such as localization, navigation, exploration, and
path planning. To be truly useful, such systems require the
fast and accurate estimation of the robot pose and the scene
geometry. The straightforward acquisition of 3D models is also
of interest for augmented reality applications including com-
puter games, home decoration, and refurbishment measures.
For example, designers and architectures can benefit from this
technology as it allows them to cost-effectively scan a room
or a piece of furniture before starting the actual work.

Two examples of 3D models acquired with our approach
are shown in Figure 1. Our scanning equipment consists of
a handheld Asus Xtion Pro Live sensor and a laptop with a
Quadro GPU from Nvidia. The laptop provides a live view of
the reconstructed model. Both models were acquired in real-
time from 1000 images (approx. 30 seconds). As can be seen in
the figure, the resulting models are highly detailed and provide
absolute metric information about the scene which is useful
for a large variety of subsequent tasks.

This work has partially been supported by the DFG under contract number
FO 180/17-1 in the Mapping on Demand (MOD) project.

Fig. 1: Reconstruction of a room with a handheld sensor using our
approach. Camera tracking and reconstruction runs in real-time on a
laptop and provides live feedback to the user. Top row: living room.
Bottom row: study room.

Structure from motion (SfM) techniques from computer
vision typically use images from a moving camera. By ex-
tracting and matching visual features across several views,
bundle adjustment can be used to estimate both the camera
poses and a sparse 3D model of the feature points [13, 2].
Furthermore, several methods have been proposed to compute
dense depth maps from image data [10, 21]. The advent of
depth sensors like the Microsoft Kinect opened new possibili-
ties for approaches on dense 3D reconstruction, as they directly
output dense depth images. Accordingly, we investigate in this
paper how dense depth images can be efficiently registered
and integrated, and how the scene geometry and texture can
be represented to facilitate this endeavor.

Recently, Newcombe et al. [18] have presented impressive
results by using signed distance functions (SDFs) to repre-
sent the scene geometry and the iterated closest point (ICP)
algorithm for camera tracking. Whelan et al. [24] extended
this approach with a rolling reconstruction volume and color
fusion, and evaluated alternative methods for visual odometry
estimation. However, pure visual odometry is inherently sub-
ject to significant drift, so that the registration with respect to
a world model is in our point of view preferable.

The contribution of this work is a novel method for esti-



mating the camera motion directly based on the SDF. The
key insight behind our approach is that the SDF already
encodes the distance of each voxel to the surface. As a result,
we do not need explicit data association or downsampling
as in ICP to achieve real-time performance. We present an
extensive evaluation of our approach on public benchmark
datasets. In comparison to previous methods, we found that
our approach yields more accurate and more robust tracking
than ICP-based KinectFusion (as implemented in the point
cloud library [1]) and it is often comparable to the feature-
based RGB-D SLAM [8]. Furthermore, we demonstrate that
our approach is stable enough to use it for position control of
an autonomous quadrocopter.

II. RELATED WORK

Simultaneous localization and mapping refers to both the es-
timation of the camera pose and mapping of the environment.
This requires a suitable representation of the scene geometry,
and the choice of this representation strongly influences the
efficiency of pose estimation and map optimization.

Laser-based localization and mapping approaches often use
scan matching or the iterated closest point algorithm (ICP) [4]
to estimate the motion between frames. Graph SLAM methods
use these motion estimates as input to construct and optimize
a pose graph [15]. Typically, these methods render a joint map
only after pose graph optimization, and this map is generally
not used for further pose optimization. The resulting maps
are often represented as occupancy grid maps or octrees [25]
and are therefore well suited for robot localization or path
planning. Henry et al. [9] were the first to apply the Graph
SLAM approach to RGB-D data using a combination of visual
features and ICP. A similar system was recently presented
by Endres et al. [8] and extensively evaluated on a public
benchmark [22]. In this paper, we compare the performance
of our approach to the RGB-D SLAM system and demonstrate
that we often achieve a comparable tracking performance at a
higher frame-rate. Newcombe et al. [18] recently demonstrated
with their famous KinectFusion approach that dense recon-
struction is possible in real-time by using a Microsoft Kinect
sensor. To represent the geometry, Newcombe et al. employ a
signed distance function (SDF) [7] and use ICP in a coarse-to-
fine manner to estimate the camera motion. For each image,
the algorithm first renders a point cloud from the SDF at the
previous pose using ray tracing and subsequently aligns this
with the next depth image. Point correspondences are found
using projective data association [5] and the point-to-plane
distance. As the original implementation is not available and
no benchmark evaluation is provided, we compare our ap-
proach to the KinFu open-source implementation as available
in the point cloud library [1]. We show in this paper that our
approach outperforms KinFu in terms of speed and accuracy.

While ICP only minimizes the error on point clouds,
several approaches have recently appeared that minimize the
photometric error [20, 12] or combinations of both [23],
however without subsequent 3D reconstruction. Whelan et al.
[24] recently integrated these methods with the KinectFusion

approach and demonstrated that superior tracking performance
can be achieved, however without evaluating the global con-
sistency of the resulting model.

Canelhas [6] developed in his master’s thesis an approach
for camera tracking similar to ours. However, his focus lies
more on object detection and recognition in an SDF, and no
thorough evaluation of the accuracy was performed. Kubacki
et al. [14] showed how an SDF can be used to estimate
the camera pose, however, only on synthetic data and with-
out a comparative evaluation. Recently, Ren and Reid [19]
demonstrated SDF-based object tracking where they assume a
known object model. Based on this, they generate a SDF that
they subsequently use for object tracking. By using a robust
cost function, robustness to fast camera motions and partial
occlusions can be achieved.

In this paper, we describe (1) a direct approach to camera
tracking on SDFs, (2) present a thorough evaluation of SDF-
based tracking and mapping on public benchmarks, and (3)
compare the tracking performance to existing real-time solu-
tions. We study the influence of alternative distance metrics,
weighting functions and different camera motions on a large
number of different scenes. Furthermore, we demonstrate that
our approach is directly applicable to position control of a
quadrocopter and the automatic 3D reconstruction of rooms.

III. NOTATION AND PRELIMINARIES

We denote a 3D point as x ∈ R3. Further, we denote the
rotation of the camera as R ∈ SO(3) and the translation as
t ∈ R3. At each time step, an RGB-D camera outputs a color
and a depth image, to which we refer to by the functions

IRGB : R2 → R3 and Id : R2 → R. (1)

We assume that the depth image is already registered to the
color image, so that pixels correspond one-to-one.

We assume the pinhole camera model with intrinsic pa-
rameters fx, fy , cx and cy corresponding to the focal length
and the optical center. According to this model, a 3D point
x = (x, y, z)> is projected onto the image plane by

π(x, y, z) =

(
fxx

z
+ cx,

fyy

z
+ cy

)>
(2)

and we can reconstruct the 3D point corresponding to a pixel
(i, j)> ∈ R2 with depth z = Id(i, j) by

ρ(i, j, z) =

(
(i− cx)z

fx
,
(j − cy)z

fy
, z

)>
. (3)

IV. APPROACH

We represent the geometry using a signed distance function
stored in a voxel grid. We follow an iterative approach where
we first estimate the camera pose given the previous SDF, and
then update the SDF based on the newly computed camera
pose. Note that we optimize the camera pose directly on the
SDF, while KinectFusion [18] first generates a synthetic depth
images that it subsequently aligns to the current depth image
using ICP.



A. Camera Tracking

In this part, we present how we estimate the camera motion
given an SDF and a depth image. For now, we assume that we
already have a representation of the geometry acquired from
the previous depth image given by the SDF

ψ : R3 → R. (4)

This function returns for any point x ∈ R3 the signed distance
from x to the surface. The idea is now to use the SDF to
construct an error metric that describes how well a depth image
Id fits to the SDF.

For each pixel (i, j), we have its depth z = Id(i, j). Given
this, we can reconstruct the corresponding 3D point xij in the
local coordinate system of the camera by (3). We can transform
this point to the global coordinate frame using

xGij = Rxij + t, (5)

and now query the SDF to read out its distance from the
surface. Given that the SDF and the camera pose is correct,
the reported value should then be zero.

We seek to find the camera rotation R and translation t such
that all reprojected points from the depth image lie as close
as possible to the zero-crossing in the SDF (=surface), i.e.,

{x | ψ(x) = 0}. (6)

This idea is illustrated in Figure 2.
By assuming Gaussian noise in the depth measurements of

the camera and that all pixels are independent and identically
distributed, the likelihood of observing a depth image Id from
camera pose R, t becomes

p(Id | R, t) ∝
∏
i,j

exp(−ψ(Rxij + t)2). (7)

Our goal is now to find the camera pose R∗, t∗ that maximizes
this likelihood, i.e.,

(R∗, t∗) = argmax
R,t

p(Id | R, t). (8)

To simplify subsequent computations, we take the negative
logarithm and define the error function

E(R, t) =
∑
i,j

ψ(Rxij + t)2, (9)

where i, j iterate over all pixels in the depth image (in our case
640×480). Remember that in an SDF, all points on the surface
have a distance of zero. Therefore, in the noise free case, our
error function would return zero as all points would exactly
reproject onto the surface. In practice, due to noise, the error
function will never be exactly zero. Moreover, not all pixels
in the depth image are defined (for example, due to missing
values because of occlusions or poor reflectance). Furthermore,
the voxel grid underlying the SDF has a finite size and may
also have missing values. Therefore, we count the number of
evaluated pixels n and normalize the error accordingly.

To minimize this error function we use the Lie algebra
representation of rigid-body motion as described in Ma et al.

Fig. 2: Our goal is to find the camera pose ξn+1 such that the SDF
values between the reprojected 3D points is minimized. The SDF is
constructed from the first n depth images and corresponding camera
poses ξ1, . . . , ξn.

[17]. A rigid-body motion can be described with the 6-
dimensional twist coordinates

ξ = (ω1, ω2, ω3, v1, v2, v3), (10)

where (v1, v2, v3) refer to the translational and (ω1, ω2, ω3) to
the rotational components. The advantage of the Lie algebra is
that it is a minimal representation, i.e., it has only six degrees
of freedom. Using this notation, we can rewrite (9) as

E(ξ) =
∑
i,j

ψij(ξ)
2, (11)

where

ψij(ξ) = ψ(Rxij + t). (12)

Our goal is now to find the twist ξ that minimizes this
function. To solve this, we apply the Gauss-Newton method for
nonlinear minimization. We start by linearizing ψ around our
initial pose estimate ξ(0) that we set to the estimated previous
camera pose ξn of time step n,

ψ(ξ) ≈ ψ(ξ(k)) +∇ψ(ξ(k))>(ξ − ξ(k)), (13)

where ∇ψ(ξ(k)) is the derivative of the signed distance
function evaluated at ξ(k) and k is the iteration step. Plugging
this into (11) gives us a quadratic form that approximates the
original error function, i.e.,

Eapprox(ξ) =
∑
i,j

(ψij(ξ
(k)) +∇ψij(ξ(k))>(ξ − ξ(k)))2.

(14)

We can efficiently minimize this equation by putting its
derivative to zero, i.e.,

d

dξ
Eapprox(ξ) = 0, (15)

which, after some calculations, becomes∑
i,j

ψij(ξ
(k))∇ψij(ξ(k))+

∇ψij(ξ(k))∇ψij(ξ(k))>(ξ − ξ(k)) = 0. (16)



Here ψij(ξ
(k))∇ψij(ξ(k)) gives a 6-dimensional vector bij

for each pixel and ∇ψij(ξ(k))∇ψij(ξ(k))> gives a 6×6-
dimensional matrix Aij for each pixel. By defining

A :=
∑
i,j

∇ψij(ξ(k))∇ψij(ξ(k))> ∈ R6×6, (17)

b :=
∑
i,j

ψij(ξ
(k))∇ψij(ξ(k)) ∈ R6×1, (18)

we can rewrite (16) as

b +Aξ −Aξ(k) = 0. (19)

From this, we can compute the camera pose that minimizes
the linearized error as

ξ(k+1) = ξ(k) −A−1b, (20)

which can quickly be computed as A is only a 6×6 matrix.
Based on this new estimate, we re-linearize the original error
function (11) around ξ, and solve iteratively (20) until con-
vergence. We stop when either the change ‖ξ(k+1)− ξ(k)‖∞
is small enough or when a certain number of iterations is
exceeded. Upon convergence, we assign the final pose estimate
to the current camera ξn+1.

In order to obtain real-time performance, we computed all
vectors bij and matrices Aij in parallel on the GPU since they
are independent of each other.

B. Representation of the SDF

As detailed by Curless and Levoy [7], we represent the SDF
using a discrete voxel grid of resolution m. We allocate two
grids in memory, where one stores the averaged distances, and
the second one stores the sum of all weights, i.e.,

D : [0, . . . ,m− 1]3 7→ R, (21)

W : [0, . . . ,m− 1]3 7→ R. (22)

Keeping track of the weight in each cell allows us to handle
occlusion and sensor uncertainty appropriately, as we will
detail in the next subsection. Given a reconstruction volume
of dimension width × height × depth, a world point x =
(x, y, z)> ∈ R3 is mapped to voxel coordinates ij

k

 = m

x/width + 0.5
y/height + 0.5
z/depth + 0.5

 . (23)

Since (i, j, k)> is generally non-integer, we determine the
signed distance value ψ(x) by tri-linear interpolation between
the values of its eight integer neighbors.

C. Distance and Weighting Functions

To integrate a new depth image, we need to determine
which voxels have been observed by the depth camera and
update their distances accordingly. While Curless and Levoy
[7] originally proposed to perform ray casting from the sensor,
we follow the opposite approach similar to [18] by projecting
each voxel onto the image plane. This has the advantage that
every voxel is visited exactly once, which is hard to ensure

(a) (b)

Fig. 3: Visualization of the projective point-to-point distance (a) and
the point-to-plane distance (b). Note that computing the true distance
is computationally involved.

in the ray casting approach. As the operation that has to be
carried out for each voxel is independent of its neighbors, this
process can be easily parallelized on the GPU. In contrast to
previous work, we present in the following several alternative
distance and weighting functions and study their influence on
the performance.

To implement this strategy, we need to compute the distance
of each voxel to the observed surface as represented by the
current depth image. Note that computing the true distance of
each voxel is time consuming, as it requires the computation
of all shortest paths over the entire volume. Even efficient
algorithms such as Fast Marching [3] are not well suited for
real-time applications. Therefore, we resort instead to an ap-
proximation based on the projective distance. We investigated
both the projective point-to-point and point-to-plane metric as
illustrated in Figure 3 with more details given in the next two
subsections.

1) Projective Point-To-Point: For each vertex we have its
global (center) coordinates xG. Given the pose of the current
camera R, t, we can transfer these coordinates in the local
coordinate frame of the camera as

x = (x, y, z)> = R>(xG − t). (24)

According to our camera model (2), this point gets projected
to the pixel

(i, j)> = π(x) (25)

in the image. We define then the projective point-to-point
distance as the difference of the depth of the voxel and the
observed depth at (i, j)>, i.e.,

dpoint-to-point(x) := z − Id(i, j). (26)

Note that this distance is signed, i.e., negative values are
assigned to voxels in front of the observed surface, and positive
values to voxels behind.

2) Projective Point-To-Plane: Our motivation for the in-
vestigating the point-to-plane metric was that the point-to-
point metric gets increasingly inaccurate the less the viewing
angle is orthogonal to the surface (see Figure 3 b). This can
be resolved by using the point-to-plane distance under the
assumption that the observed surface is locally planar.

As a first step, we apply a bilateral filter to the depth image
and compute the normals for all pixels. Given a voxel x, we



Fig. 4: We truncate large estimated distances to limit the influence
of approximation errors and noise.

compute its corresponding pixel coordinates (i, j) and read
out the observed surface normal n(i, j). The point-to-plane
distance can then be computed as

dpoint-to-plane(x) := (y− x)>n(i, j). (27)

Again, note that this distance is signed, i.e., negative values
refer to voxels in front of the surface and positive values to
voxels behind.

3) Truncation and Weighting: As projective distance met-
rics are only approximations of the true distance function,
they can be highly erroneous, especially when the estimated
distances are large. However, for tracking and reconstruction,
we are in particular interested that a small band around the
zero-crossing is accurately estimated in the SDF. Therefore,
we truncate the projected distances d and apply a weighting
term that blends out large distances. For truncation, we use

dtrunc =

 −δ if d <−δ
d if |d|≤δ
δ if d >δ

(28)

The truncation function is also illustrated in Figure 4. Note
that due to this truncation, the gradient of our SDF will be
zero in regions that are far away from the estimated surface.

Furthermore, we employ a weighting function to give higher
weights to voxels in front of the observed surface and lower
weights to voxels behind. Depending on the observation model
of the depth sensor, different weighting functions can be used.
In this work, we study six different weighting functions as
depicted in Figure 5: The constant weight trivially assumes a
constant weight for all voxels, i.e.,

wconst(d) = 1. (29)

This is suitable for distance sensors that can (deeply) penetrate
objects, such as a radar. The linear weight, as proposed by
Curless and Levoy [7] and used in KinectFusion, assigns a
constant weight to all voxels up to a certain penetration depth
ε. After this depth, the weight linearly decreases to zero at
penetration depth δ:

wlin(d) =


1 if d < ε
δ−d
δ−ε if d ≥ ε and d ≤ δ.
0 if d > δ

(30)

The linear model expresses a certain prior for the minimum
depth δ of objects in the scene and a linear prior afterwards. In

Fig. 5: We evaluated six different weighting functions for data fusion.

contrast to this, we propose an exponential weighting function
motivated by a Gaussian noise model of depth measurements,
i.e.,

wexp(d) =


1 if d < ε

e−σ(d−ε)
2

if d ≥ ε and d ≤ δ.
0 if d > δ

(31)

As we will show in our experimental evaluation, this weighting
function leads to a slightly higher robustness than the linear
weight function.

D. Data Fusion and 3D Reconstruction

Given a sequence of (approximate) distance measurements
and the weights for a particular voxel cell x̄ = (i, j, k), our
goal is to fuse all of these measurements to obtain the best
possible estimate for ψ(x). As this estimation process can be
carried out independently for each voxel, we drop the index
x̄ in the remainder of this subsection. For this, we follow the
approach of Curless and Levoy [7], that we briefly summarize
here.

Under the assumption that all distance measurements are
normally distributed, this estimation problem can be formu-
lated as follows. We seek the distance ψ that maximizes the
observation likelihood

p(d1, w1, . . . , dn, wn | ψ) ∝
n∏
i=1

exp

(
−1

2
wi(ψ − di)2

)
,

(32)

where di and wi refer to the observed truncated distances
and weights in frame i, respectively. After taking the negative
logarithm, we obtain a quadratic error function

L(ψ) =

n∑
i=1

1

2
wi(ψ − di)2 (33)

that we aim to minimize. By putting the derivative of L(ψ) to
zero we obtain

ψ =

∑n
i=1 widi∑n
i=1 wi

, (34)

which means that the optimal ψ is the weighted average of
all measurements. Therefore, we can calculate the estimated



(a) (b)
start/end

Fig. 6: On small work spaces, our method is nearly drift-free. (a) 3D
reconstruction and the estimated camera trajectory of a small office
scene. (b) Visualization of the (downsampled) voxel grid underlying
the reconstruction volume (m = 256).

signed distance of each voxel as a running weighted average,
i.e.,

D ← WD + wn+1dn+1

W + wn+1
(35)

W ←W + wn+1. (36)

Note that this computation has to be carried our for each voxel.
As each voxel does not depend on its neighbors, this update
can easily be computed in parallel for all voxels on the GPU.

E. Meshing and Colorization

The SDF encodes the 3D geometry of the scene. As the
surface is located at the zero crossing in the signed distance
function, we apply a straight-forward implementation of the
marching cubes algorithm [16] to extract the corresponding
triangle mesh.

Next to the estimation of the geometry, we also estimate
a color texture of the scene similar to [24]. We represent
this texture using an additional voxel grid consisting of three
channels R,G,B for the color and one additional channel for
the color weights Wc. The computation can be carried out
in parallel during the update step of the SDF as described in
Section IV-D. Given that a voxel is sufficiently close to the
surface, i.e., ‖d‖ < ε, we retrieve the observed color

(r, g, b)> = IRGB (i, j) (37)

from the RGB image and update the color estimate as the
running average

R← WcR+ wn+1
c r

Wc + wn+1
c

(38)

G← WcG+ wn+1
c g

Wc + wn+1
c

(39)

B ← WcB + wn+1
c b

Wc + wn+1
c

(40)

where wn+1
c is the weight for the new measurement. As

weight, we use

wn+1
c = wn+1 cos θ, (41)

where θ is the angle between the ray and the principal axis to
give more weight to pixels whose normal is pointing towards
the camera. While extracting the triangle mesh using marching
cubes, we query the color grid to compute colors for vertices
using tri-linear interpolation.

V. RESULTS

In this section we present both qualitative results of 3D
reconstructions from live-data and quantitative results on the
TUM RGB-D benchmark [22]. We compare the performance
our algorithm to KinFu [1] and RGB-D SLAM [8], and
study the influence of the truncation parameter and alternative
weighting functions on the tracking performance. Finally, we
analyze the robustness of our approach with respect to fast
camera movements and provide runtime measurements.

A. Qualitative Results

Figures 1 and 6 show several live reconstructions of rooms
using our algorithm at a grid resolution of m = 512 and
m = 256, respectively. The resulting reconstruction is highly
detailed and metrically accurate, so that it could for example
be used by architects and interior designers for planning and
visualization tasks.

We observe that our method is almost drift-free for small
scenes, as can be seen in Figure 6a, where we started and
ended a rectangular camera motion at the same spot. Moreover,
fine details such as the cover of the RSS proceedings appear
sharply.

Furthermore, we used our approach for 3D reconstruction
from an autonomous quadrocopter (see Figure 7) equipped
with an RGB-D camera. Note that tracking and reconstruction
were carried out in real-time on an external ground station
with GPU support. The estimated pose was directly used
for position control. This demonstrates that our technique
is applicable for the navigation of quadrocopters and other
robots.

The video provided as supplemental material further illus-
trates our experimental setups and provides additional views
of the reconstructed models.

B. Benchmark Evaluation

We also evaluated our approach on the TUM RGB-D
benchmark [22]. As comparison we used the KinFu implemen-
tation [1] and RGB-D SLAM [8]. For the ICP-step of KinFu,
we explored a large range of different parameter settings and
selected the one with the highest performance.

In this evaluation, we chose δ = 0.3 m and ε = 0.025 m.
The results are given in Table I. Our approach clearly out-
performs KinFu which diverges in particular on the faster
sequences. We believe that this is due to the fact that KinFu
looses much valuable information because of the down-
projection of the SDF to a synthetic depth image prior to
camera tracking. In particular for large camera motions, the
synthetic image is taken from a substantially different view-
point so that the alignment process is more difficult. For our
algorithm, we found that the point-to-point metric provides



TABLE I: The root-mean square absolute trajectory error for KinFu and our method for different resolutions, metrics and datasets. Also the
result for RGB-D SLAM are presented.

Method Res. Teddy F1 Desk F1 Desk2 F3 Household F1 Floor F1 360 F1 Room F1 Plant F1 RPY F1 XYZ

KinFu 256 0.156 m 0.057m 0.420 m 0.064 m Failed 0.913 m Failed 0.598 m 0.133 m 0.026 m
KinFu 512 0.337 m 0.068 m 0.635 m 0.061 m Failed 0.591 m 0.304 m 0.281 m 0.081 m 0.025 m
Point-To-Plane 256 0.072 m 0.087 m 0.078 m 0.053 m 0.811 m 0.533 m 0.163 m 0.047 m 0.047 m 0.029 m
Point-To-Plane 512 0.101 m 0.059 m 0.623 m 0.053 m 0.640 m 0.206 m 0.105 m 0.041 m 0.042 m 0.026 m
Point-To-Point 256 0.086 m 0.038 m 0.061 m 0.039 m 0.641 m 0.420 m 0.121 m 0.047 m 0.047 m 0.021 m
Point-To-Point 512 0.080 m 0.035 m 0.062 m 0.040 m 0.567 m 0.119 m 0.078 m 0.043 m 0.042 m 0.023 m

RGB-D SLAM 0.111 m 0.026 m 0.043 m 0.059 m 0.035 m 0.071 m 0.101 m 0.061 m 0.029 m 0.013 m

Fig. 7: 3D reconstruction using an autonomous quadrocopter. Top:
AscTec Pelican platform used. Bottom: Resulting 3D reconstruction
of the room computed in real-time on the ground station.

better results on most sequences. In comparison to RGB-D
SLAM, we achieve often a similar performance in terms of
accuracy but require six to eight times less computation time.
As our approach only uses structure for tracking, it fails in
cases where only co-planar surfaces are visible, such as a wall.
KinFu suffers the same limitation, while RGB-D SLAM uses
the texture. It would be interesting to additionally exploit the
color information during tracking [12].

C. Parameter Study

We investigated the influence of the truncation parameter δ
and ε on the Teddy and Desk sequence. As Figure 8a shows,
choosing δ too small results in poor tracking. This is expected
since then the band where the gradient is non-zero is very
narrow. The upper limit clearly depends on the scene and
encodes a prior of the average object depth. For typical office
scenes, δ = 0.3 m is a reasonable choice.

Furthermore, we evaluated the weighting functions proposed
in Section IV-C, Table II gives the results. We found that the
exponential weighting function leads to more robust tracking,
although the linear weight is slightly more accurate. Clearly,
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Fig. 8: (a) The choice of the truncation parameter δ depends on the
average depth of the objects in the scene. For typical indoor scenes,
δ = 0.3 m is a good choice. (b) RMSE when using only every k-th
frame (to emulate faster camera motions).

TABLE II: Evaluation of alternative weighting functions.

Dataset F1 Teddy F1 Desk
RMSE Max RMSE Max

Exp. Weight 0.088 m 0.213 m 0.038 m 0.088 m
Linear Weight 0.083 m 0.285 m 0.038 m 0.089 m
Constant Weight 0.093 m 0.242 m 0.040 m 0.089 m
Narrow Exp. 0.170 m 0.414 m 0.038 m 0.083 m
Narrow Linear 0.382 m 0.688 m 0.044 m 0.085 m
Narrow Constant 0.379 m 0.694 m 0.044 m 0.209 m

the narrow weighting functions yield inferior tracking results.

D. Robustness Evaluation

We also evaluated the robustness of our method with respect
to the camera speed. For this, we tracked only every k-th frame
on the Desk and Household sequences. The results are given
in Figure 8b. The performance quickly decreases if more than
three images are left out in the fast Desk sequence (0.4 m/s),
while our approach yields decent results for up to six skipped
frames for the slower Household sequence (0.25 m/s). The
RMSE for every sixth image is 4.3 cm which still outperforms
KinFu with 6.1 cm when using every image.

E. Runtime and Memory Consumption

For a resolution of m = 256, our approach consumes on
average around 23 ms and thus runs easily in real-time time on
30 fps RGB-D data. In comparison, KinFu consumes on the
same hardware and at the same resolution 20 ms per frame,
while RGB-D SLAM requires around 100–250 ms. All three
algorithms make extensive use of the GPU. Based on this



evaluation, we conclude that our algorithm runs approximately
at the same speed as KinFu and six times faster than RGB-D
SLAM.

In more detail, our approach requires 19.4 ms for pose
optimization and 3.7 ms for data fusion at m = 256, while for
m = 512, it takes 31.1 ms for pose optimization and 21.6 ms
for data fusion. Note that in theory, the complexity of pose
optimization solely depends on the size of the input images,
while the complexity of data fusion depends cubically on the
resolution of the volume.

For m = 256, our approach requires 128 MB of RAM on
the GPU for the SDF and 256 MB for the color grid; for
m = 512, it requires 1 GB for the SDF and 2 GB for the
color grid.

VI. CONCLUSION

In this paper we presented a novel approach to directly
estimate the camera movement using a signed distance func-
tion. Our method allows the quick acquisition of textured 3D
models that can be used for real-time robot navigation. By
evaluating our method on a public RGB-D benchmark, we
found that it outperforms ICP-based methods such as KinFu
and, at least on medium-sized scenes, often obtains a com-
parable performance with bundle adjustment methods such as
RGB-D SLAM at a significantly reduced computational effort.
In the future, we plan to include color information in camera
tracking and investigate methods that allow a more efficient
representation of the 3D geometry. For larger geometries, the
combination of our method with a SLAM solver like [15, 11]
would be interesting.
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