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Abstract

Convolutional networks are successful due to their
equivariance/invariance under translations. How-
ever, rotatable data such as images, volumes, shapes,
or point clouds require processing with equivari-
ance/invariance under rotations in cases where the
rotational orientation of the coordinate system does
not affect the meaning of the data (e.g. object classi-
fication). On the other hand, estimation/processing
of rotations is necessary in cases where rotations
are important (e.g. motion estimation). There has
been recent progress in methods and theory in all
these regards. Here we provide an overview of ex-
isting methods, both for 2D and 3D rotations (and
translations), and identify commonalities and links
between them.

1 Introduction
Rotational and translational equivariance play an important
role in image recognition tasks. Convolutional neural networks
(CNNs) are translationally equivariant: the convolution of a
translated image with a filter is equivalent to the convolution
of the untranslated image with the same filter, followed by
a translation. Unfortunately, standard CNNs do not have an
analogous property for rotations.

A naive attempt to achieve rotational equivari-
ance/invariance is data augmentation. Its major problem is
that rotational equivariance in the data but not in the network
architecture forces the network to learn each object orientation
“from scratch” and hampers generalization. Methods that
achieve rotational equivariance/invariance in more advanced
ways have appeared recently.

Apart from methods that are invariant under rotations of the
input (i.e. where rotation “must not matter”), we also include
examples of methods that can return rotations as output, as
well as methods that use rotations as input and/or as deep
features (i.e. where rotation matters).

This work is structured as follows. In Section 2 we introduce
important mathematical concepts such as equivariance and
steerability. In Sections 3–4 we present the main approaches
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used to achieve rotational equivariance. In Section 5.1 we cat-
egorize concrete methods that use those approaches to achieve
equivariance/invariance. We also categorize methods that can
return a rotation as output in Section 5.2 and methods that use
rotations as input and/or deep features in Section 5.3. Finally,
we draw conclusions in Section 6. The mathematical concepts
(Section 2) serve as a foundation for the best (i.e. exact and
most general) equivariant approach (Section 3.3).

2 Formal Definitions
2.1 Equivariance
Definition 1. A function 𝑓 : 𝒳 → 𝒴 is equivariant under a
group𝐺 (with some group actions 𝜋 and 𝜓 of𝐺 that transform
𝒳 and 𝒴 , respectively) if

𝑓(𝜋𝑔[x]) = 𝜓𝑔[𝑓(x)] ∀𝑔 ∈ 𝐺 ∀ x ∈ 𝒳 , (1)

where 𝜋𝑔 is the action of 𝑔 on 𝒳 , i.e. a transformation (for
example rotation) of the input of 𝑓 , and 𝜓𝑔 is the action of
𝑔 on 𝒴 , i.e. an “associated” (via the same 𝑔) but possibly
different transformation (for example rotation of the image
and of the feature space) of the output of 𝑓 . In other words,
for each transformation 𝜋𝑔 that modifies the input of 𝑓 , we
know a transformation 𝜓𝑔 that happens to the output of 𝑓 (due
to transforming the input by 𝜋𝑔), without the need to know
the input x. The usage of 𝑔 ∈ 𝐺 to associate 𝜓𝑔 with 𝜋𝑔 is
important for correct composition of several transformations.
For example, if 𝜋𝑔 is a 180∘ rotation, i.e. 𝜋𝑔𝜋𝑔 is the identity
mapping, then 𝜓𝑔𝜓𝑔 should also be the identity mapping.

If the content of a rectangular image is rotated (and/or trans-
lated), the “field of view” changes, i.e. features that used to be
in the corners disappear and new features appear in the cor-
ners. This has caused some confusion as to how rectangular
images can be processed in a rotation-equivariant way. The
explanation is the following: An output value of the neural
network is only affected if the change of features is within its
receptive field and the network has not learned from data that
such a feature change should be irrelevant for the output.

Similarly, if two input features are rotated relatively to each
other, an output value changes only if both input features are
within its receptive field and the network has not learned that
such a relative rotation should be processed equivariantly.
Definition 2. A special case of equivariance is
same-equivariance [Dieleman et al., 2016], when 𝜓 = 𝜋. In
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some sources, same-equivariance is called equivariance, and
what we call equivariance is called covariance.
Definition 3. A special case of equivariance is invariance,
when 𝜓 = I, the identity.
Definition 4. Equivariance is exact if Eq. (1) holds strictly,
approximate (for example approximated through learning) if
Eq. (1) holds approximatively.

2.2 Steerability
Definition 5. A function 𝑓 : 𝒳 → 𝒴 is steerable if rotated
versions of 𝑓 can be expressed using linear combinations of a
fixed set of basis functions ℎ𝑗 for 𝑗 = 1, . . . ,𝑀 , that is:

𝑓(𝜋[x]) =

𝑀∑︁
𝑗=1

𝑘𝑗(𝜋)ℎ𝑗(x), (2)

where 𝜋 is a rotation and 𝑘𝑗 are complex-valued rota-
tion-dependent steering factors.

For example, if we consider a standard non-normalized
2D Gaussian 𝐺(𝑥, 𝑦) = 𝑒−(𝑥2+𝑦2), its first derivative
𝐺𝑥(𝑥, 𝑦) = 𝜕𝐺

𝜕𝑥 (𝑥, 𝑦) in the 𝑥 direction can be steered at
an arbitrary orientation 𝜃 through a linear combination of
𝐺0∘

𝑥 (𝑥, 𝑦) = 𝐺𝑥(𝑥, 𝑦) = −2𝑥𝑒−(𝑥2+𝑦2) and 𝐺90∘

𝑥 (𝑥, 𝑦) =

𝐺𝑥(𝜋
90∘ [𝑥, 𝑦]) = −2𝑦𝑒−(𝑥2+𝑦2):

𝐺𝜃
𝑥(𝑥, 𝑦) = 𝐺𝑥(𝜋

𝜃[𝑥, 𝑦])

= cos(𝜃)𝐺0∘

𝑥 (𝑥, 𝑦) + sin(𝜃)𝐺90∘

𝑥 (𝑥, 𝑦). (3)

A visualization of the case 𝜃 = 30∘ looks as follows:

𝐺30∘

𝑥 (𝑥, 𝑦)⏟  ⏞  = cos(30∘)⏟  ⏞  
∼0.87

𝐺0∘

𝑥 (𝑥, 𝑦)⏟  ⏞  +sin(30∘)⏟  ⏞  
0.5

𝐺90∘

𝑥 (𝑥, 𝑦)⏟  ⏞  .
(4)

A useful consequence of steerability is that convolution of an
image with basis filters ℎ𝑗 is rotationally equivariant. The
mapping 𝜓 in Eq. (1) in this case corresponds to a linear
combination of the feature maps. As a side note, the mapping
𝜓 can also be a certain kind of linear combinations even if the
filters are not a basis of a steerable filter, see Section 3.3.

A harmonic function 𝑓 is a twice continuously differen-
tiable function that satisfies Laplace’s equation, i.e. ∇2𝑓 = 0.
Circular harmonics and spherical harmonics are defined on
the circle and the sphere, respectively, and are similar to the
Fourier series (i.e. sinusoids with different frequencies).

2D or 3D rotational equivariance can be hardwired in the
network architecture by restricting the filters’ angular compo-
nent to belong to the circular harmonic or spherical harmonic
family, respectively. The proof utilizes steerability properties
of such filter banks. The radial profile of these filters on the
other hand can be learned. There are various techniques to
parameterize the radial profile (with learnable parameters).

2.3 Group Convolution
Definition 6. The group convolution [Cohen and Welling,
2016, Esteves et al., 2018a] between a feature map F and a

filter W is defined as

(F ⋆𝐺 W)(x) =

∫︁
𝑔∈𝐺

F(𝜑𝑔[𝜂])W(𝜑−1
𝑔 [x]) d𝑔, (5)

where 𝐺 is a group, 𝑔 ∈ 𝐺 is a group element with group
action 𝜑𝑔, and 𝜂 is typically a canonical element in the do-
main of F (e.g. the origin if the domain is R𝑛). The group
convolution can be shown [Esteves et al., 2018b, Kondor and
Trivedi, 2018] to be equivariant. The ordinary convolution is
a special case of the group convolution.

3 Approaches that Guarantee Exact
Rotational Equivariance

In this section we list and briefly discuss the approaches
used to achieve exact rotational equivariance/invariance. The
state-of-the-art approach is described in Section 3.3.

3.1 Hardwired Pose Normalization
A basic approach to address the problem of rotational invari-
ance consists in trying to “erase” the effect of rotations by
reverting the input to a canonical pose by hardwiring a rever-
sion function such as PCA. Problems are: small noise can
strongly influence the result especially for objects with sym-
metries; learned low-level feature detectors do not generalize
to other orientations.

3.2 Handcrafted Features
Extractors of simple rotationally invariant features can be
handcrafted rather than learned. Examples include features
based on distances between pairs of points (SE(𝑛)-invariant),
and/or between each point and the origin (invariant under
rotations around the origin). Handcrafted feature extractors
are not trained, i.e. not optimal.

3.3 General Linear Equivariant Mappings and
Equivariant Nonlinearities

In many situations, the best approach are the most general
methods that guarantee equivariance [Kondor and Trivedi,
2018, Weiler et al., 2018a, Cohen et al., 2019]. Several formu-
lations are available.

When using so-called irreducible representations of the ro-
tation group, the equivariant mapping corresponds to the usage
of steerable filters (see Section 2.2). This enables equivariance
under all infinitely many rotation angles, but pointwise nonlin-
earities such as ReLU are not equivariant in this basis. Only
other, special nonlinearities are equivariant. (See Section 3.3
by [Cohen et al., 2019] for an overview of equivariant non-
linearities, equivariant batch normalization, and equivariant
residual learning.)

On the other hand, when using regular representations, the
mapping corresponds to group convolution, Eq. (5), i.e. the
usage of a finite number of rotated versions of arbitrary fil-
ters. This enables equivariance only under a discrete subgroup
(e.g. 45∘ rotations in a plane) of the rotation group, but point-
wise nonlinearities like ReLU are equivariant.

For 2D rotations, results are best in practice when group
convolutions with small rotation angles and pointwise nonlin-
earities are used [Weiler and Cesa, 2019].
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For the most common purposes, this is arguably the best
of all approaches: it guarantees exact equivariance (unlike
Section 4), without an obligation to use untrainable feature
extractors (unlike Section 3.2) or unstable pose normalization
(unlike Section 3.1).

Note that the exactness of the equivariance is slightly re-
duced when data are discretized to a pixel/voxel grid. Deeper
layers might further amplify the impact of the angle between
the grid and the object on the features. A part of this “missing
part of equivariance” can be learned from training data (see
Section 4.1). If the trained network has such “partially learned”
equivariance, it is not obvious how it achieves it, i.e. the group
action 𝜓 of intermediate layers is not known, unlike in the
case of exact equivariance.

4 Approaches to Learn Approximate
Rotational Equivariance

Various approaches exist that facilitate the learning of approxi-
mated (inexact) rotational equivariance. Note that for datasets
where exact equivariance is appropriate, approaches that pro-
vide exact equivariance (Section 3.3) usually work better.

4.1 Data Augmentation

Data augmentation (i.e. random rotations of samples during
training) is the most naive approach to deal with rotational
equivariance. Such rotational equivariance in the training data
but not in the network architecture forces the network to learn
to recognize each orientation of each object part “from scratch”
and hampers generalization.

4.2 Learned Pose Normalization

Instead of hardwiring a pose normalization function as de-
scribed in Section 3.1, it is possible to force or encourage the
network to learn a reversion function directly from the train-
ing data. As an example of the “encourage” case, in spatial
transformer networks [Jaderberg et al., 2015], learning a pose
normalization is a facilitated but not a guaranteed side effect
of learning to classify.

4.3 Soft Constraints

Another approach to let the network learn rotational equi-
variance/invariance is to introduce additional soft constraints,
which are typically expressed by auxiliary loss functions that
are added to the main loss function. For example, a similarity
loss [Coors et al., 2018] can be defined, which penalizes large
distances between the predictions or feature embeddings of
rotated copies of the input that are simultaneously fed into
separate streams of a siamese network.

The advantage of this approach is the ease of implementa-
tion. Furthermore, it can be used in combination with other
approaches that provide non-exact equivariance (e.g. pose nor-
malization) in order to enhance it. The disadvantage is that
equivariance/invariance is only approximative. The quality of
the approximation depends on the loss formula, training data,
network architecture and optimization algorithm.

4.4 Deformable Convolution
The deformable convolution [Dai et al., 2017] augments a
CNN’s capability of modeling geometric transformations.
Input-dependent offsets are added to the sampling locations
of the standard convolution. The offsets are computed by ap-
plying an additional convolutional layer over the same input
feature map. Bilinear image interpolation is used due to non-
integer offsets. The advantage of this approach is that it can
learn to handle very general transformations such as rotation,
scaling, and deformation, if training data encourage this. The
disadvantage is that there is no guarantee of equivariance.

5 Overview of Methods
In this section we list and categorize deep learning methods for
handling rotatable data and rotations. This includes methods
that are equivariant under rotations of the input, methods that
output a rotation, and methods that use rotations as inputs
and/or deep features.

5.1 Equivariance under Rotations of the Input
Methods that are equivariant under rotations of the input are
categorized in Table 1 (for 2D rotations) and Table 2 (for 3D
rotations) according to the following criteria:

• Input:

– Pixel grid: a grid representation of 2D image data
– Voxel grid: a grid representation of 3D volumetric

data
– Point cloud: a set of 3D point coordinates
– Spherical signal: a function defined on the sphere
– Polygon mesh: a collection of vertices, edges, and

faces that describes a surface consisting of polygons
– dMRI (6D): six-dimensional diffusion-weighted

magnetic resonance images [Müller et al., 2021]

• Approach: see Definition 4 and Sections 3–4

• Property: equivariance (Definition 1) or invariance (Defi-
nition 3)

• Group:

– SO(2): the group of 2D rotations
– SE(2): the group of 2D rigid-body motions
– SO(3): the group of 3D rotations
– SE(3): the group of 3D rigid-body motions

• Cardinality: continuous (entire group) or discretized to
specific angles

5.2 Rotations as Output
Examples of deep learning methods that output a (3D) rota-
tion are categorized in Table 3 and Table 4 according to the
following characteristics:

• Input to the network that outputs the rotation, and accord-
ing rotation-prediction task:

– Image. The task is to estimate the orientation of a
depicted object relative to the camera.
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– Cropped stereo image: A pair of images is taken
at the same time from two cameras that are close
together and point in the same direction. The images
are cropped in a predetermined fashion. Each pair of
cropped images constitutes one input. The position
of the cameras relative to each other is fixed. The
task is to estimate the orientation of a depicted object
relative to the cameras.

– Volumetric data. The task is to estimate the orienta-
tion of an object relative to volume coordinates.

– Slice of volumetric data. The task is to estimate
the orientation of a 2D slice relative to an entire
(predefined) 3D object.

– Video: Two or three or more images (video frames).
The task is to estimate the relative rotation and trans-
lation of the camera between (not necessarily con-
secutive) frames.

• Number of objects/rotations: Describes how many rota-
tions the network outputs.

– One rigid object: One rotation is estimated that is
associated with a rigid object. The visible “object”
is the entire scene in cases where camera motion
relative to a static scene is estimated. Other small
moving objects can be additionally accounted for
(for example to refine the optical-flow estimation),
but their rotation is not estimated.

– Hierarchy of object parts: Relative rotations be-
tween the objects and their parts are estimated, with
several hierarchy levels, i.e. an “object” consisting
of parts can itself be one of several parts of a “higher-
level” object. Among the methods listed in Tables 3–
4, only capsule networks belong to this category.

• Specialization:

– Specialized on one object: The network can only
process one type of object on which it was trained.

– Specialized on multiple objects: The network can
process an object from an arbitrarily large but fixed
set of object types on which it was trained.

– Generalizing to new objects: The network can gen-
eralize to unseen types of objects.

• Group: SO(3) or SE(3)

• Representation (embedding) of the rotation(s):

– Rotation matrix
– Quaternion
– Euler angles
– Axis-angle representation
– Discrete bins: Rotations are grouped into a finite set

of bins.
– Transformation matrix
– 3D coordinates of four keypoints on the object (pre-

defined object-specifically, e.g. four of its corners)
– Eight corners and centroid of 3D bounding box pro-

jected into 2D image space

Method Ap-
proach

Prop-
erty

Group Cardinality

Many Learned
(Data
augmentation)

* * *

Spatial Transformer
Networks [Jaderberg et al.,
2015]

Learned
(Learned pose
normalization)

In-
vari-
ance

SE(2) Continuous

Cyclic Symmetry in CNNs
[Dieleman et al., 2016]

Exact Equi-
var.

SE(2) Discretized
(90∘ angles)

Group Equivariant CNNs
[Cohen and Welling, 2016]

Exact Equi-
var.

SE(2) Discretized
(90∘ angles)

Harmonic Networks
[Worrall et al., 2017]

Exact Equi-
var.

SE(2) Continuous

Vector Field Networks
[Marcos et al., 2017]

Exact Equi-
var.

SE(2) Discretized
(any angle)

Oriented Response Net-
works [Zhou et al., 2017b]

Exact Equi-
var.

SE(2) Discretized
(any angle)

Deformable CNNs
[Dai et al., 2017]

Learned
(Deformable
convolution)

Equi-
var.

SE(2) Continuous

Polar Transformer Networks
[Esteves et al., 2018b]

Learned
(Learned pose
normalization)

Equi-
vari-
ance

SE(2) Continuous

Steerable Filter CNNs
[Weiler et al., 2018b]

Exact Equi-
var.

SE(2) Discretized
(any angle)

Learning invariance with
weak supervision
[Coors et al., 2018]

Learned
(Soft
constraints)

In-
vari-
ance

SE(2) Continuous

Roto-Translation Covariant
CNNs [Bekkers et al., 2018]

Exact In-
var.

SE(2) Discretized
(any angle)

RotDCF: Decomposition of
Convolutional Filters
[Cheng et al., 2019]

Exact Equi-
vari-
ance

SE(2) Discretized
(any angle)

RiCNN
[Chidester et al., 2018]

Exact In-
var.

SO(2) Discretized
(any angle)

Siamese Equivariant Embed-
ding [Véges et al., 2019]

Learned
(Soft
constraints)

Equi-
var.

SO(2) Continuous

CNN model of primary
visual cortex
[Ecker et al., 2019]

Exact Equi-
vari-
ance

SE(2) Discretized
(any angle)

General Steerable CNNs
[Weiler and Cesa, 2019]

Exact Equi-
var.

SE(2) Continuous

Table 1: Methods with equivariance under 2D rotations. The termi-
nology is summarized in Section 5.1. The input to each method is
an image. In Polar Transformer Networks, the image is transformed
to a circular signal in an intermediate layer. Methods with identi-
cal cell entries differ in terms of details. Potential weaknesses are
highlighted. General Steerable CNNs and their implementation in
the e2cnn [Weiler and Cesa, 2019] library are the “best” in that
they provide various hyperparameter choices, with the other exact
methods being special cases thereof (see Section 3.3).

– Learned representation: The latent space (e.g. of an
autoencoder) is used to represent the rotation. There
are several interesting aspects at play:

* Learned representations allow for ambiguity: If
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Method Input Ap-
proach

Prop-
erty

Group Cardinality

Many * Learned
(Data
augmentation)

* * *

Spatial Transformer
Networks [Jaderberg
et al., 2015]

Voxel
grid

Learned
(Learned pose
normalization)

In-
vari-
ance

SE(3) Continuous

Equivariant Repre-
sentations [Esteves et
al., 2018a]

Spher-
ical
signal

Exact Equi-
vari-
ance

SO(3) Continuous

Spherical CNNs
[Cohen et al., 2018]

Spher-
ical s.

Exact Equi-
var.

SO(3) Continuous

Tensor Field
Networks [Thomas
et al., 2018]

Point
cloud

Exact Equi-
vari-
ance

SE(3) Continuous

N-body Networks
[Kondor, 2018]

Point
cloud

Exact Equi-
var.

SO(3) Continuous

CubeNet [Worrall
and Brostow, 2018]

Voxel
grid

Exact Equi-
var.

SE(3) Discretized
(90∘ angles)

3D G-CNNs
[Winkels and Cohen,
2018]

Voxel
grid

Exact Equi-
vari-
ance

SE(3) Discretized
(90∘/180∘

angles)
3D Steerable CNNs
[Weiler et al., 2018a]

Voxel
grid

Exact Equi-
var.

SE(3) Continuous

PPF-FoldNet
[Deng et al., 2018]

Point
cloud

Exact
(handcrafted
features)

In-
var.

SE(3) Continuous

Gauge Equivariant
Mesh CNNs [de
Haan et al., 2021]

Poly-
gon
mesh

Exact Equi-
vari-
ance

SE(3) Continuous

SE(3)-Equivariant
DL for dMRI
[Müller et al., 2021]

dMRI
(6D)

Exact Equi-
vari-
ance

SE(3) Continuous

Table 2: Methods with equivariance under 3D rotations. The ter-
minology is summarized in Section 5.1. Potential weaknesses are
highlighted. Tensor Field Networks are the “best” for point clouds
in that they provide continuous exact SE(3)-equivariance. Similarly,
3D Steerable CNNs are the “best” neural networks for voxel grids.
On the other hand, CubeNet and 3D G-CNNs offer only discrete
rotations but are compatible with nonlinearities such as ReLU. The
exact methods for 3D data are available via the e3nn [Geiger et al.,
2020] library.

an object looks very similar from two angles and
the loss allows for it, the network can learn to
use the same encoding to represent both rotations.
On the other hand, unambiguous representations
(like the ones listed above) would require genera-
tive/probabilistic models to deal with ambiguity.

* Certain representations are encouraged due to the
overall network architecture. For example, in cap-
sule networks, learned representations of rotation
are processed in a very specific way (multiplied
by learned transformation matrices).

* Features other than rotation might be entangled
into the learned representation. This is not even
always discouraged. For example, in capsule net-

Method Input Spe-
cializa-
tion

Group Embed-
ding

Loss
function

PoseNet
[Kendall et al., 2015]

Image One
object

SE(3) Quater-
nion

𝐿2 dist. in
embed-
ding space

Relative camera pose
estimation using
CNNs [Melekhov et
al., 2017]

Video
(two
non-con-
secutive
frames)

Gener-
alizing
to new
objects

SE(3) Quater-
nion

𝐿2 dis-
tance in
embed-
ding space

3D pose regression
using CNNs
[Mahendran et al.,
2017]

Image Mul-
tiple
objects

SO(3) Axis-
angle or
quater-
nion

Geodesic
distance

Real-time seamless
single shot 6D object
pose prediction
[Tekin et al., 2018]

Image Mul-
tiple
objects

SE(3) Bound-
ing
box

Squared
𝐿2 dist. in
embed-
ding space

Registration of a slice
to a predefined volume
[Mohseni Salehi et al.,
2019]

Slice
of vol-
ume

One
object

SE(3) Axis-
angle
repre-
senta-
tion

Geodesic
distance1

Registration of a
volume to another,
predefined volume
[Mohseni Salehi et al.,
2019]

Vol-
ume

One
object

SE(3) Axis-
angle
repre-
senta-
tion

Geodesic
distance1

SSD-AF
[Pandey et al., 2018]

Crop-
ped
stereo
image

Mul-
tiple
objects

SE(3) Vari-
ous2

Smoothed
𝐿1 dist. in
embed-
ding space

Learning
local RGB-to-
CAD correspondences
[Georgakis et al.,
2019]

Image
and
3D
model

Mul-
tiple
objects

SE(3) Rota-
tion
matrix

Squared
𝐿2 dist. in
embed-
ding space

1 Initially squared 𝐿2 distance in embedding space (fast to com-
pute); then geodesic distance for rotation and squared 𝐿2 distance
for translation.

2 Each method from the SSD-AF family uses a different embedding:
discrete bins, four keypoint locations in 3D space, quaternion,
Euler angles.

Table 3: Examples of deep learning methods that can output a 3D
rotation, where a ground truth rotation is used for training. The
terminology is summarized in Section 5.2. Losses that lack rotational
invariance are highlighted.

works, the learned representation may also con-
tain other object features such as color.

• Loss function. We distinguish the following categories:
– Rotations are estimated at the output layer. The loss

measures the similarity to ground truth rotations
of training samples. These methods are listed in
Table 3.

* Geodesic distance between prediction and ground
truth: This loss is rotationally invariant, i.e. the
network miscalculating a rotation by 10∘ always
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Method Input Spe-
cializa-
tion

Group Embed-
ding

Loss
function

Capsule Networks
[Sabour et al., 2017]

Image Gener-
alizing
to new
objects

SE(3) Trans-
forma-
tion ma-
trices1

Object
classifi-
cation

Spatial Transformer
Networks
[Jaderberg et al., 2015]

Vol-
ume

Gener-
alizing
to new
objects

SE(3) Trans-
forma-
tion ma-
trix

Object
classifi-
cation

Unsupervised learning of
depth and ego-motion
[Zhou et al., 2017a]

Video
(three
consec-
utive
frames)

Gener-
alizing
to new
objects

SE(3) Euler
angles

View
warping

Learning implicit
representations of 3D
object orientations from
RGB [Sundermeyer et al.,
2018]

Image One
object

SO(3) Learned
repre-
senta-
tion

Auto-
encoder

GeoNet
[Yin and Shi, 2018]

Video
(several
consec-
utive
frames)

Gener-
alizing
to new
objects

SE(3) Euler
angles

View
warping

1 Poses of lowest-level object parts: learned representation; part-to-
object pose transformations: transformation matrices (as trainable
parameters).

Table 4: Examples of deep learning methods that can output a 3D
rotation, where a ground truth rotation is not necessary for training.
The terminology is summarized in Section 5.2. Losses are highlighted
for which a good loss value does not guarantee a good prediction of
rotations.

results in the same loss value, regardless of the
ground truth rotation and of the direction into
which the prediction is biased.

* 𝐿𝑝 distance in embedding space: This loss value
is fast to compute but not rotationally invariant,
i.e. an error of 10∘ yields different loss values de-
pending on the ground truth and on the prediction.
Due to this “unfairness”/“arbitrarity”, such losses
are highlighted in the table.

– Rotations are estimated in an intermediate layer and
used in subsequent layers for a “higher-level” goal
of a larger system. Ground truth rotations are not
required. These methods are listed in Table 4.

* Object classification: Rotation prediction is
trained as part of a larger system for object clas-
sification. The estimated rotation is used to ro-
tate the input or feature map (in spatial trans-
former networks) or predicted poses (in capsule
networks) as an intermediate processing step. It
is assumed that learning to rotate to a canonical
pose (in spatial transformer networks) or to let
object parts vote about the overall object pose (in
capsule networks) is beneficial for object classi-
fication. The estimation of rotation is incidental
and encouraged by the overall setup. However,

its approximate correctness is not necessary for
perfect object classification. Therefore, the “pre-
dicted rotation” can be very wrong, and due to
this danger this loss is highlighted in the table.

* View warping: At least two video frames are
used to estimate the scene geometry (depth maps)
and camera motion between the views (rotation,
translation). These estimates are used to warp one
view (image, and possibly depth map) to resemble
another view. The loss measures this resemblance.
This is a form of self-supervised learning: ground
truth geometry and motion are not given, but are
estimated such that they cause warping that is
consistent with the input images. The rotation
estimation can be expected to be good, because it
is necessary for good view synthesis.

* Autoencoder reconstruction loss: The network is
trained to reconstruct its input (a view of the ob-
ject) after passing it through a lower-dimensional
latent space. The output target has a neutral im-
age background and lacks other objects that were
visible in the input image. This allows the net-
work to learn to discard the information about
the background and other objects before the bot-
tleneck layer. If the network is specialized on
one object, then maintaining in the latent space
only the information about the object pose is suf-
ficient for such reconstruction. If additionally the
latent space is sufficiently low-dimensional, then
the learning is encouraged to be economic about
the amount of information encoded in the latent
space, i.e. to encode nothing but the pose.

Estimation of 2D rotations is simpler in terms of representa-
tion. Predicting the sine and cosine of the rotation angle (and
normalizing the predicted vector to length 1, because other-
wise the predicted sine and cosine might slightly contradict
each other, or be beyond [−1, 1]) is better than predicting the
angle, because the latter requires learning a function that has a
jump (from 360∘ to 0∘), which is not easy for (non-generative)
neural networks.

5.3 Rotations as Input or as Deep Features
Other uses of rotations in deep learning are to take rotations as
input, or to restrict deep features to belong to SO(𝑛) (without
requiring them to directly approximate rotations present in the
data). For example, [Huang et al., 2017] use rotation matrices
as inputs and as deep features. They restrict deep features to
SO(3) by using layers that map from SO(3) to SO(3).

6 Conclusions
Among the methods for equivariance/invariance, the most suc-
cessful ones are based on the exact and most general approach
(Section 3.3). They are very effective in 3D input domains as
well. With emerging theory [Kondor and Trivedi, 2018, Co-
hen et al., 2019] for exact equivariance and with emerging
approaches, it appears to be the perfect time to use the meth-
ods in various application domains and to tune them. Existing
pipelines that do not have (exact) equivariance yet and for
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example rely on data augmentation are likely to benefit from
incorporating exact-equivariance approaches.
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