
Holistic Image Reconstruction
for Diffusion MRI

Vladimir Golkov, Jorg M. Portegies, Antonij Golkov, Remco Duits,
and Daniel Cremers

Abstract Diffusion MRI provides unique information on the microarchitecture of
biological tissues. One of the major challenges is finding a balance between image
resolution, acquisition duration, noise level and image artifacts. Recent methods
tackle this challenge by performing super-resolution reconstruction in image space
or in diffusion space, regularization of the image data or of postprocessed data (such
as the orientation distribution function, ODF) along different dimensions, and/or
impose data-consistency in the original acquisition space. Each of these techniques
has its own advantages; however, it is rare that even a few of them are combined.
Here we present a holistic framework for diffusion MRI reconstruction that allows
combining the advantages of all these techniques in a single reconstruction step. In
proof-of-concept experiments, we demonstrate super-resolution on HARDI shells
and in image space, regularization of the ODF and of the images in spatial
and angular dimensions, and data consistency in the original acquisition space.
Reconstruction quality is superior to standard reconstruction, demonstrating the
feasibility of combining advanced techniques into one step.
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1 Introduction

Among the main problems in diffusion MRI are scan duration limits (thus a limited
amount of data), image resolution limits, noise, and image artifacts. In recent
years, a host of methods [1–9] have been developed to tackle these issues. These
methods use (simplified) assumptions about the data, such as specific types of
smoothness / transform-domain sparsity / low-rankedness, specific types of data
similarity between different coordinates in the 3-D space of diffusion directions
and weightings (q-space), accurate or simplified image acquisition models, in some
cases combined with a tailored acquisition strategy.

Super-resolution in diffusion MRI allows increasing the resolution beyond
the hardware limits. In the original super-resolution techniques for diffusion
MRI [10, 11], there is no coupling of different q-space coordinates, i.e. each q-space
coordinate is treated independently without taking advantage of common structure.
It is performed from image space to image space, independently of the image
reconstruction step. Recent methods [12–14] couple q-space coordinates and use
the original data-acquisition space but regularize only in the reconstruction space—
not in additional spaces.

The proposed method allows leveraging complementary information by coupling
in q-space, while imposing data consistency in the original space and balancing
regularization in several arbitrary representations simultaneously.

The rest of the paper is organized as follows. In Sect. 2.1, we describe the
data formation model. In Sect. 2.2, we introduce holistic reconstruction (raw data
consistency, several regularization spaces, super-resolution reconstruction in image
and diffusion space) and give details on sampling in acquisition and reconstruction
spaces, the regularizers, the optimization procedure and its implementation. We
show results of holistic super-resolution reconstruction after artificial subsampling
of Human Connectome Project data in Sect. 3 and conclude with a discussion in
Sect. 4.

2 Methods

2.1 Image Acquisition Model

The image is modeled on a domain ˝ � R
3, where ˝ � R

3 represents the domain
in image space, and dimensions four to six of ˝ �R

3 represent the space consisting
of three-dimensional diffusion directions and diffusion weightings (q-space) for
which discrete samples are acquired. A complex-valued diffusion MRI image � is a
mapping

� W ˝ � R
3 ! C given by (1)

.y; q/ 7! �.y; q/ D r.y; q/ exp.i'.r; q//; (2)
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where r is the image magnitude and ' is the image phase at spatial coordinate y 2 ˝

and q-space coordinate q 2 R
3. Magnitude r and phase ' are mappings

r W ˝ � R
3 ! R; (3)

' W ˝ � R
3 ! S1: (4)

These images are not acquired directly. Acquisition is performed in k-space (more
precisely: in the joint six-dimensional .k; q/-space), after Fourier transform F1;2

along the spatial dimensions 1 and 2 of ˝ . When sampled at N data points, the
resulting data d 2 C

N forms from r and ' according to

d D T.r; '/ C "; (5)

where " is complex-valued i.i.d. Gaussian noise (thermal noise) and T is the
encoding operator. The operator T composes r and ' pointwise into a complex-
valued image via C.r; '/ D r ˇ exp.i'/ where “ˇ” is the pointwise product,
followed by a Fourier transform into .k; q/-space and discrete sampling S:

T.r; '/ D SF1;2C.r; '/; with (6)

S W R3 � R
3 ! C

N given by (7)

.S O�/n D
Z

Œ�0:5;0:5�3
O�.kn C v; qn/ dv; (8)

where the ..kn; qn//n2f1;:::;Ng are the sampling points in .k; q/-space. Details can be
found in [15, 16].

2.2 Holistic Reconstruction

Our goal is to reconstruct the image magnitude r and phase ' from the acquired
data d. In order to improve image quality, such a reconstruction should include
state-of-the-art image processing methods, such as denoising, super-resolution
reconstruction and orientation distribution function1 (ODF) enhancement. Rather
than performing this in a classical manner, where each step is performed separately,
we couple all transformations and regularizers into a single optimization problem.
This allows performing the entire reconstruction in a single step, while having
full control over the balance between all regularizers simultaneously. Furthermore,
this avoids data-consistency formulations in intermediate spaces, where the noise

1The ODF is a formalism that characterizes the strength of diffusion in different directions. It is
defined formally below in Eq. (10).
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distribution is difficult to model correctly (e.g. Rician signal distribution and other
cases)—our least squares data term penalizes deviation from k-space measurements,
where noise is Gaussian, while still reconstructing and regularizing in arbitrary
spaces. Finally, a holistic formulation allows regularizing in additional spaces other
than the acquisition and the reconstruction space. This allows for example using
information from the ODF (otherwise calculated independently at a later step) to
inform the super-resolution reconstruction in image space.

In our proof-of-concept holistic reconstruction experiments, we treat the entire
six-dimensional data jointly (rather than treating each q-space coordinate inde-
pendently during image space reconstruction, followed by treating each image
coordinate y independently during q-space-based processing) and combine the
following concepts into a single optimization problem:

– Data consistency in the original .k; q/-space,
– Reconstruction into .y; q/-space with super-resolution in both the spatial and

diffusional dimensions,
– Spatial regularization of .y; q/-space data,
– Angular regularization of .y; q/-space data by treating each q-space shell inde-

pendently as functions on the (uncoupled) space R
3 � S2 of positions and

orientations,
– Spatial and angular regularization of the ODFs which implicitly correspond to the

reconstructed .y; q/-space data by treating them as functions on the (uncoupled)
space R

3 � S2 of positions and orientations.

The general form of holistic reconstruction into .y; q/-space is

arg min
r;'

1

2
kT.r; '/ � dk2 C R.r/; (9)

where R.r/ is a sum of regularization terms which may or may not transform the
image magnitude r into another space, such as ODFs, prior to penalizing non-
regularity.2

The “codomain” of our pipeline, i.e. the reconstruction space, can be extended
into diffusion models, as in [17, 18]. These model-based methods can be comple-
mented by our regularizers in additional spaces to yield a holistic framework.

Sampling Scheme in .k; q/-Space In order to verify the super-resolution recon-
struction capability of our holistic reconstruction, we use data of uniquely high
resolution from the Human Connectome Project [19–26], assuming it to be the
ground truth underlying image data, and simulate a low-resolution k-space sampling
of these ground truth images. In order to leverage complementarity of data in
q-space, we employ a low-resolution .k; q/-space sampling scheme [13] in which
high resolution components are left out alternatingly in vertical or horizontal

2The precise formula that we use for R.r/ will follow later in Eq. (12).
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Fig. 1 Sampling scheme in q-space during acquisition (left) and reconstruction (right). The
acquired data have alternating artificial subsampling in vertical/horizontal high frequencies in
k-space. All high frequencies for all images are reconstructed. Colors encode the b-value: B D
f0; 1000; 2000; 3000g s=mm2

image directions for different q-space coordinates. The q-space coordinates and the
respective alternating vertical/horizontal k-space subsampling are shown in Fig. 1,
left. Both acquisition and reconstruction (see next paragraph) use the set of b-values
B D f0; 1000; 2000; 3000g s=mm2.

Super-Resolution Sampling Scheme in Reconstruction Space While data are
artificially subsampled in k-space for the experiments, the reconstruction space is
discretized such that the original high image resolution is reconstructed. While 270
q-space coordinates are sampled (Fig. 1, left), 486 are reconstructed (Fig. 1, right).
This scheme achieves a super-resolution reconstruction in image and diffusion
space.

Regularization We will regularize several images of the type U 2 H
2.R3 � S2/,

namely the ODF and the spherical shells in q-space (whereHk denotes the respective
Sobolev space).

The ODF [27] for image r at image location y 2 ˝ and direction n 2 S2 can be
calculated as

ODF.r/.y; n/ D 1

Z�

Z 1

0

.F4;5;6r/.y; pn/p� dp (10)

with the usual choice � D 2, where Z� is a normalization constant and F4;5;6 is
the Fourier transform along the diffusion dimensions four to six that calculates the
diffusion propagator from q-space data in an idealized setting [28].
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Let Gb be the linear operator that extracts a spherical q-space shell at a given
b-value (diffusion weighting) from r:

.Gb.r// .y; n/ D r.y;
p

bn/: (11)

In a proof-of-concept holistic reconstruction, the shells and the ODFs are
regularized in the uncoupled space R3 � S2 of positions and orientations as follows:

R.r/ D
X
b2B

Z
R3�S2

˛1kryGb.r/.y; n/k2

� ˛2

˝
Gb.r/.y; n/;ΔS2Gb.r/.y; n/

˛ C ˛3jΔS2 Gb.r/.y; n/j2 dy d�.n/

C
Z
R3�S2

˛4kryODF.r/.y; n/k2

� ˛5

˝
ODF.r/.y; n/;ΔS2ODF.r/.y; n/

˛ C ˛6jΔS2 ODF.r/.y; n/j2 dy d�.n/;

(12)

where B is the set of reconstructed b-values, the ˛i are regularization parameters,
� is the usual surface measure on S2, ΔS2 is the Laplace–Beltrami operator on
the sphere and the negative inner products correspond to first-order regularization
according to

R �hU;ΔUi D R krUk2 (i.e. Green’s identity with vanishing
boundary conditions as we assume our functions U to vanish at the boundary).

Defining appropriate inner products on the space H
2.R3 � S2/ 3 U; V and on

H
1.R3 � S2;R3/ 3 ryU; ryV as

˝
U; V

˛ D
Z
R3�S2

U.y; n/V.y; n/ dy d�.n/; (13)

˝ryU; ryV
˛ D

X
i2f1;2;3g

Z
R3�S2

�ryU.y; n/
�

i

�ryV.y; n/
�

i
dy d�.n/; (14)

and using the induced norms, we can rewrite the problem (9,12) as follows:

min
r;'

1

2
kT.r; '/ � dk2

C
X
b2B

˛1kryGb.r/k2 � ˛2

˝
Gb.r/;ΔS2 Gb.r/

˛C ˛3kΔS2 Gb.r/k2

C ˛4kryODF.r/k2 � ˛5

˝
ODF.r/;ΔS2 ODF.r/

˛C ˛6kΔS2 ODF.r/k2:

(15)

Reformulations To obtain a convenient min-max form with simpler expressions
within the norms, we shall use the identity:

kOxk2 D sup
Oy

˝Ox; Oy˛ � 1

4
kOyk2; (16)

obtained by taking the convex biconjugate and completing the square. This refor-
mulation introduces dual variables Oy.
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Optimization Procedure Our optimization problem (15) can be rewritten as a min-
max problem of the form

min
x

max
y

G.x/ C ˝
K.x/; y

˛� F�.y/ (17)

with convex G, F� and a nonlinear K, which can be solved with the modified primal-
dual hybrid gradient method for nonlinear K [15, 29, 30]:

xiC1 WD .I C �@G/�1.xi � �ŒrK.xi/��yi/; (18a)

xiC1
! WD xiC1 C !.xiC1 � xi/; (18b)

yiC1 WD .I C �@F�/�1.yi C �K.xiC1
! //; (18c)

where @f represents the subdifferential of a function f , defined as

@f .x0/ D ˚
v j f .x/ � f .x0/ � ˝

v; x � x0

˛ 8x 2 domf
�

; (19)

and .IC�@f /�1 is the resolvent of the subdifferential, corresponding to the proximal
operator [31]:

.I C �@f /�1x D prox�f .x/ D arg min
z

f .z/ C 1

2�
kx � zk2: (20)

The algorithm (18) has been applied [15] with the operator T.r; '/ to non-
diffusion MRI, and with another operator to diffusion MRI. The author announces
combining T.r; '/ with direct reconstruction of the diffusion tensor in a future study,
while we present an application of T.r; '/ to reconstruction in image � diffusion
space.

By rewriting all five norms in our problem (15) using the identity (16), we obtain
the min-max form

min
r;'

max
�;.�b/b2B;.	b/b2B;
;�

˝
T.r; '/; �

˛ � ˝
d; �

˛ � 1

2
k�k2

C
X
b2B

˛1

�˝ryGb.r/; �b
˛ � 1

4
k�bk2

�

� ˛2

˝
Gb.r/;ΔS2 Gb.r/

˛C ˛3

�˝
ΔS2 Gb.r/; 	b

˛ � 1

4
k	bk2

�

C ˛4

�˝ryODF.r/; 

˛ � 1

4
k
k2

�

� ˛5

˝
ODF.r/;ΔS2 ODF.r/

˛C ˛6

�˝
ΔS2 ODF.r/; �

˛� 1

4
k�k2

�
:

(21)
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The primal variables are x D .r; '/ and the dual ones are y D .�; .�b/b2B; .	b/b2B;


; �/, where for example 	b denotes the dual variable associated to kΔS2 Gb.r/k2.
This can be regrouped into the standard form (17) as follows:

G.x/ D
X
b2B

�˛2

˝
Gb.r/;ΔS2 Gb.r/

˛ � ˛5

˝
ODF.r/;ΔS2 ODF.r/

˛
;

˝
K.x/; y

˛ D ˝
T.r; '/; �

˛CX
b2B

˛1

˝ryGb.r/; �b
˛C ˛3

˝
ΔS2 Gb.r/; 	b

˛

C ˛4

˝ryODF.r/; 

˛ C ˛6

˝
ΔS2 ODF.r/; �

˛
;

˙F�.y/ D ˙ ˝
d; �

˛˙ 1

2
k�k2

˙ 1

4

 X
b2B

˛1k�bk2 C ˛3k	bk2 C ˛4k
k2 C ˛6k�k2

!
:

(22)

For the implementation of algorithm (18), we calculate the proximal operators [31]:

.I C �@G/�1x D .I C �.Q C Q�//�1x; (23)

Q D
X
b2B

G�
bΔS2 Gb C ODF�ΔS2 ODF; (24)

.I C �@F�/�1y D

0
BBBBB@

.� � �d/=.� C 1/

.�b=.1 C ˛1�=2//b2B

.	b=.1 C ˛3�=2//b2B

=.1 C ˛4�=2/

�=.1 C ˛6�=2/

1
CCCCCA

: (25)

Calculating ŒrK.xi/�� (18) for the nonlinear part T.r; '/ (22) yields

ŒrT.r; '/�� D .SF1;2ŒrC.r; '/�/� D ŒrC.r; '/��F�
1;2S�; (26)

ŒrC.r; '/�� O� D
 

<. O�/ cos.'/ C =. O�/ sin.'/

r.=. O�/ cos.'/ � <. O�/ sin.'//

!
: (27)

Unbounded ODF Operator When writing out the Fourier transform F4;5;6 over
Q 2 R

3, the ODF (10) contains the diverging term exp.�ihpn; Qi/p2. Thus, the
ODF operator is unbounded. Since an adjoint is required for the algorithm (18),
the operator can be made bounded in the infinite-dimensional setting by including
a Gaussian damping factor exp.�p2=&2/ as a mollifier. The operator bound of the
discrete operator depends on the discretization, and in our discretization scheme no
mollifier was needed in practice.
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Implementation Details The operators F1;2, S (6), ODF (10), Gb (11), ry and ΔS2

are linear. In the implementation, the spaces in which acquisition, regularization
and reconstruction take place are discretized and thus the operators can be written
as matrices. We obtain these matrices explicitly. Where not evident, an operator
matrix is computed by applying the operator to all standard basis vectors of the
discretized space, yielding the columns of the matrix. For pointwise operators, we
compute and store repeating coefficients only once. When computing ŒrK.�/�� and
K.�/ in the algorithm (18), having the operator matrices explicitly has the advantages
of rapid computation by matrix multiplication and easy computation of the adjoint
operators. Besides, in the discretized setting, the ODF operator is not unbounded
anymore and thus has an adjoint, as required by the algorithm. The norm kŒrK.�/��k
of the operator ŒrK.�/�� explodes as the discretization becomes finer, but in our
discretization settings there was no need to include a Gaussian mollifier in (10). The
practical implementation of the ODF operator is given by generalized q-sampling
imaging [32].

3 Results

Figure 2 shows the high-resolution “ground truth” image data from the Human
Connectome Project (Fig. 2, left) alongside the results of two reconstruction meth-
ods applied to the same data that has been artificially subsampled according to
the sampling scheme in .k; q/-space described in section “Sampling Scheme in
.k; q/-Space” and illustrated in Fig. 1, left. This artificial subsampling procedure
emulates a clinical setting where resolution is considerably lower than in the
Human Connectome Project, and enables a comparison to this exceptionally high-
resolution ground truth data. The two compared reconstruction methods are standard
reconstruction (F1;2-transformed subsampled data; Fig. 2, middle) and holistic

Fig. 2 High-resolution ground truth (left), standard reconstruction (middle), holistic super-
resolution reconstruction (right)
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image reconstruction (as described above, with super-resolution sampling as in
Fig. 1, right; results in Fig. 2, right).

The employed parameters were ˛1 D 0:3; ˛2 D 0:1; ˛3 D 0:1; ˛4 D 0:01; ˛5 D
0:3; ˛6 D 0:01.

Holistic image reconstruction demonstrates considerably more detail than stan-
dard reconstruction. While standard reconstruction results have a visibly lower
resolution, holistic reconstruction retrieves details that are present in the ground
truth data due to its super-resolution scheme and regularization in image and
diffusion space.

4 Discussion

The results of holistic reconstruction demonstrate considerably more detail than the
standard reconstruction.

Among the numerous advanced diffusion MRI reconstruction methods exist-
ing in literature, many methods perform denoising, missing data reconstruction
(q-space compressed sensing), enhancement, etc. as an intermediate post-processing
step after image-space reconstruction. However, standard-reconstructed images can
contain artifacts, intensity bias (e.g. Rician or more complicated), and irretrievably
discard some parts of information present in the raw k-space data. Imposing data
consistency in reconstructed image space can lead to these errors being propagated
on into subsequent data processing steps, and/or introduce less tractable bias-
correction terms. There is strong evidence that one-step pipelines are better than
multi-step pipelines due to information loss in intermediate steps [33]. Particularly,
imposing data consistency on the original raw data in k-space yields improved
results compared to multi-step processing [13]. The holistic reconstruction frame-
work presented herein allows imposing data consistency in the original data
acquisition space, while also including regularization in several spaces (such as
.y; q/-space and “(y,ODF)-space”), and reconstructing into an arbitrary space,
including super-resolution reconstruction sampling.

Super-resolution methods are beneficial for diffusion MRI due to their capability
to exceed hardware limitations on resolution. In the presented holistic reconstruction
framework, super-resolution is performed in image space and diffusion space
simultaneously, cf. Fig. 1. At the same time, data consistency in the original
space and regularizations in additional spaces are incorporated in a straightforward
manner.

Many competing regularizers in different spaces exist in recent literature. Each
of them incorporates certain assumptions and improves data quality at certain
intermediate regularization strengths. Regularizations in different spaces can be
combined into one procedure (including true data consistency and super-resolution)
using holistic image reconstruction.

Reconstruction can be performed jointly with motion and distortion correc-
tion [5] in the future.
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Finally, our choice of priors in (15) was based on isotropic Laplacians over the
spatial and angular part, and as such defined on R

3 � S2. Including anisotropies and
alignment modeling in a crossing-preserving way via the coupled space R

3 Ì S2 D
SE.3/=.f0� SO.2/g/, see [1] Theorem 2, and [34], is expected to give better results
in future work.
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