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ABSTRACT

Many limitations of diffusion MRI are due to the instabil-
ity of the model fitting procedure. Major shortcomings of
the model-based approach are a partial information loss due
to model simplicity, long scan time requirements due to fit-
ting instability, and the lack of knowledge about how the pa-
rameters of a given model would respond to previously un-
seen microstructural changes, possibly failing to detect cer-
tain previously unseen pathologies. Here we show that dif-
fusion MRI pathology detection is feasible without any mod-
els and without any prior knowledge of specific pathological
changes whatsoever. Instead, raw q-space measurements are
used directly without a model, only healthy population data
is used for reference, and any deviations in a patient dataset
from the healthy reference database are detected using nov-
elty detection methods. This is done in each voxel indepen-
dently, i.e. without spatial bias.

Index Terms— Model-free diffusion MRI, novelty detec-
tion

1. INTRODUCTION

Microstructural diffusion MRI consists of sampling the diffu-
sion space (q-space) extensively, fitting a model to the mea-
surements, and interpreting the estimated model parameters.
Herein, by the term “model” we mean any handcrafted sim-
plifications, i.e. physical models, mathematical signal repre-
sentations, handcrafted calculations. Popular models include
diffusion tensor imaging, diffusion kurtosis imaging, and neu-
rite orientation dispersion and density imaging.

1.1. Current limitations of diffusion MRI

Many limitations of diffusion MRI are due to the instability
of the model fitting procedure. Model fitting is ill-posed, par-
ticularly it cannot cope well with the data noise.

On one hand, this requires models to be simple enough for
the fitting to work stably. It has been shown that the number
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of free parameters should be about 4 or 5 rather than 10 or
11 such that model complexity is appropriate for data from
clinical MRI scans [1]. Besides, the models are handcrafted,
which means that the reduction of degrees of freedom (e.g.
from dozens of q-space measurements to about 4 or 5 model
parameters) discards information in a suboptimal way [2].

On the other hand, model fitting requires high numbers of
q-space samples to avoid instabilities. This causes long scan
durations and high costs, and makes advanced protocols inap-
plicable if time is an issue, i.e. in case of urgency or for pa-
tients who are uncooperative, uncomfortable or unwell. The
number of q-space samples required for fitting is dispropor-
tionate – approaches to estimate model parameters without
fitting achieve twelve-fold shorter scan durations [3, 4, 2].

Besides, all model-based approaches require studying the
relationship between model parameters and microstructural
tissue changes specifically for each given disease and diffu-
sion model. In other words, it is not known how the parame-
ters of a given model would respond to previously unseen mi-
crostructural changes, and whether unstudied changes would
go undetected.

1.2. Model-based approaches without fitting

1.2.1. Analytical solutions

Analytical solutions of model measure estimation [3, 4] re-
quire considerably shorter scan duration and processing dura-
tion compared to model fitting. They are limited to specific
model measures and acquisition schemes.

1.2.2. Approximation

Simulations of simplified tissue models with extensive sets
of diffusion weightings [5, 6] indicate that standard model
fitting procedures can be replaced by approximation meth-
ods. Moreover, the feasibility of model measure estimation
in a clinical setting without model fitting has been recently
demonstrated, allowing a drastic reduction of scan duration
by a factor of twelve [2].
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1.3. Model-free approach

The possibility to estimate tissue properties of interest (such
as tissue type and pathology) directly from raw q-space data
without using any models has been recently presented [2].
This data processing is optimal in the sense that it performs a
state-of-the-art data transformation (deep learning [7]) which
minimizes the output error for a training set. Its drawback is
the requirement for labeled training data. This drawback is
addressed in the present work.

1.4. Proposed approach

As a complement to the previously proposed model-free
method [2] which is trained on labeled data, we herein pro-
pose a model-free method that does not require abnormal data
for training. In the herein proposed model-free novelty-based
approach, only healthy population data (or any otherwise
“uninteresting” data) is used for reference. Any deviations
in a patient dataset from the healthy reference database are
detected using novelty detection [8] methods. This is done in
each voxel independently, i.e. without spatial bias.

1.5. Additional remarks

The distinction between the aforementioned families of meth-
ods is in some cases smooth and open to interpretation. For
instance, simple models such as the apparent diffusion coef-
ficient can be considered closed-form solutions; least squares
fitting can be implemented either by numerical procedures or
in closed form (by precomputing the inverse of the system
matrix), whereas maximum-likelihood-based fitting is usually
iterative.

2. METHODS

To circumvent numerous drawbacks of the previous ap-
proaches as discussed in Section 1, we propose a method
that requires neither models nor labeled training data.

2.1. Model-free novelty-based diffusion MRI

In model-free novelty-based diffusion MRI, the q-space mea-
surements are used directly without a model, and abnormal-
ities are detected by means of novelty detection. For this
purpose, a database of “uninteresting” q-space data is con-
structed, and deviations from this data-driven notion of “nor-
mality” are detected by novelty detection methods [8]. A
natural choice for “normal” data are healthy data (as used
herein). For other options, see Section 4.

In our framework, one data sample is one voxel, and its n
features are the q-space measurements and other image con-
trasts collected into a feature vector.

We use Matlab (The MathWorks, Natick, MA, USA)
and a novelty detection toolbox [9, 8]. The “normal” data

is affinely scaled to the interval [0; 1] along each dimension
individually, and the test data is scaled using the same trans-
formation (i.e. not exactly to the same interval, but into the
same data representation). We use a simple novelty detection
method that calculates the Euclidean distance of each tested
data point in n-dimensional feature space to its nearest neigh-
bor from the “normal” dataset. The less usual the tested data
point is, the higher is its distance to any of the normal data
points, and thus the higher is its novelty score, measured in
arbitrary units. The novelty score r(x) for a tested data point
x is thus

r(x) = min
y∈Y

d(x, y), (1)

where Y is the “normal” set and

d(x, y) = ‖x− y‖2 =

√

√

√

√

n
∑

i=1

(xi − yi)
2 (2)

is the Euclidean distance between x and a “normal” sample y.
This is one of the most straightforward novelty detec-

tion methods. However, using q-space signals x, y directly
without diffusion models and using novelty detection (i.e. do-
ing without any prior knowledge of pathology) are novel ap-
proaches which allow to circumvent numerous drawbacks of
previous approaches, as detailed in Section 1.

The bottleneck of the algorithm is the computation of the
pairwise distance matrix between the tested samples and the
“normal” database. To balance between computation duration
and memory use, we used vectorization and recursive splitting
of the data into smaller chunks.

Experiments with other novelty detection methods were
performed for comparison. The k-nearest-neighbors (k-NN)
approach [10] calculates the novelty score as

r(x) =
1

k

∑

y∈Nk(x)

d(x, y), (3)

where Nk(x) is the set of the k nearest neighbors of the tested
point x among the “normal” set Y :

Nk(x) ⊂ Y, |Nk(x)| = k, (4)

∀y ∈ Nk(x) ∀ỹ ∈ (Y \Nk(x)) : d(x, y) ≤ d(x, ỹ). (5)

For k = 1, Eq. (3) corresponds to the nearest-neighbor ap-
proach, Eq. (1).

We also tried novelty detection based on kernel density
estimation [11] (KDE), i.e. r(x) =

∑

y∈Y K(x, y), with var-
ious kernels K(·, ·) and radii, and the one-class SVM [12]
with various parameter sets.

2.2. Data

The in vivo protocols were approved by our institutional
review board and prior informed consent was obtained.
Five multiple sclerosis patients were scanned on a 3T GE
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MR750 MR scanner (GE Healthcare, Waukesha, WI, USA)
equipped with a 32-channel head coil using echo-planar imag-
ing and a diffusion spectrum [13] uniform random sampling
pattern with 167 q-space samples, bmax = 3000 s/mm2,
TE = 80.3ms, TR = 5.4 s, FOV = 24 cm× 24 cm× 12 cm,
isotropic voxel size 2.5mm, ASSET factor 2. FLAIR-, T1-
and T2-weighted images were acquired for validation of
diffusion-based lesion segmentation. The data underwent
FSL topup distortion correction [14].

2.3. Validation

State-of-the-art automatic segmentation [15] (based on non-
diffusion images with spatial priors) into healthy white mat-
ter (WM), grey matter (GM), cerebrospinal fluid (CSF) and
multiple sclerosis lesions (Fig. 1a) was used in comparison to
our proof-of-concept model-free novelty-based segmentation
(based on diffusion images without spatial priors).

The healthy reference database is constructed from the
healthy voxels (as determined by automatic non-diffusion
segmentation) of four patients, and tested on the fifth patient.
The healthy database thus contains about 300 000 healthy
samples (voxels) and the test dataset contains about 90 000
healthy and diseased samples. Using healthy volunteers as
the healthy database yielded very similar results (not shown).

3. RESULTS

Model-free novelty detection of q-space data applied to a mul-
tiple sclerosis patient dataset is shown in Fig. 1b. Gold stan-
dard multiple sclerosis lesion segmentation based on FLAIR-,
T1- and T2-weighted images and spatial priors is shown for
comparison in Fig. 1a.

The concordance between the gold standard lesion seg-
mentation and the novelty score obtained by our method is
quantified in terms of the receiver operating characteristic in
Fig. 2. The area under the curve (AUC) is 0.82. Computation
time was about two minutes on a laptop computer.

The AUC was minimally higher for k-NN, with a maxi-
mal value of 0.83 attained at k = 40. The AUC was slightly
higher for one-class SVM (experiments only with a small sub-
set of data due to long computation time; not shown) at the
cost of longer computation and the need for parameter tun-
ing. KDE-based novelty detection did not detect lesions well;
instead, it yielded very different values for healthy WM, GM
and CSF instead of a uniformly low novelty score.

4. DISCUSSION AND CONCLUSIONS

We demonstrated the feasibility of a diffusion MRI processing
method that is sensitive to microstructural changes without
using models and without prior knowledge about the impact
of the changes on the signal. This alleviates the drawbacks of

(a) Ground truth (b) Novelty score
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Fig. 1. Feasibility of model-free novelty-based diffusion
MRI. (a) Standard segmentation of tissue types WM/GM/CSF
(shown in white/grey/blue) and multiple sclerosis lesions
(shown in red). (b) Abnormality score obtained from dif-
fusion MRI data without any models and without any prior
knowledge of disease.

model fitting and provides the potential for automatic detec-
tion of understudied abnormalities.

Results of k-NN are stable across different choices of k.
For k = 1 (i.e. nearest neighbor) results are good and fast
to compute (taking the minimum rather than sorting). KDE-
based methods are less appropriate because the density of the
points in feature space is highly heterogeneous. As extreme
examples, CSF voxels are abundant and all very similar (high
density in feature space), whereas each voxel in the corpus
callosum is almost unique (low density in feature space).

Disparity of the results compared to FLAIR-based seg-
mentation can be partly attributed to an unequal impact on the
FLAIR signal vs. the q-space signal of various subtle disease-
related effects.

The setting is a model-free framework [2], i.e. using the
raw q-space data directly without any models. This avoids
the problems of an unstable model fitting procedure which on
one hand requires long scan durations [2], and on the other
hand requires model simplicity [1] and thus causes informa-
tion loss [2].

Moreover, the model-free approach otherwise would re-
quire supervised training with the lesion class, so that the
proposed novelty-based approach is its ideal complement. It
can be applied in situations where complete knowledge of all
disease effects on diffusion properties cannot be obtained.

Additional imaging contrasts can be combined with raw
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Fig. 2. Receiver operating charac-
teristic for novelty-based results of
Fig. 1. The area under the curve is
0.82.
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q-space data to gain additional information, as previously
shown [2]. Spatial variations of “normality” could also be
considered. Future work will focus on treating q-space data
as additional channels in multiparametric imaging, merging
different resolutions and nonlocal information, and applying
the supervised model-free [2] and novelty-based model-free
methods to various conditions.

Besides healthy data, other studies might include com-
mon, well-detectable diseases into the “uninsteresting” data-
base, such that rare or previously unknown disease effects on
q-space signal are detected as deviations from the “known”.
Also a process of elimination can be implemented by testing
against several databases containing different conditions.

The danger of biasing the healthy database by asymp-
tomatic patients can be reduced by using anomaly detection
(as opposed to novelty detection) to detect self-inconsistencies
(outliers) within the database itself.

Many current diffusion MRI models have a limited com-
plexity in order to allow a stable fit [1] (limited number of free
parameters). In contrast, we show that fitting is not required.
Thus, models can be more complex (more accurately describe
the tissue microstructure) to guide the understanding of mi-
crostructure effects on q-space signal, the design of q-space
sampling schemes sensitive to disease, and the simulation-
based training [5, 6] of fitting-free methods.

To summarize: If a condition affects the q-space signal
in a measurable way, the proposed method will mark it as
a deviation from normal data. This happens regardless of
any model-based simplifications or any prior knowledge of
the disease effect on the q-space signal.

5. REFERENCES

[1] U. Ferizi, T. Schneider, T. Witzel, L. L. Wald, H. Zhang,
C. A. Wheeler-Kingshott, and D. C. Alexander, “White
matter compartment models for in vivo diffusion MRI at
300mT/m,” NeuroImage, vol. 118, pp. 468–483, 2015.

[2] V. Golkov, A. Dosovitskiy, P. Sämann, J. I. Sperl,
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Diffusion MRI Processing Methods

Model-Based
By “model” we mean any handcrafted simplifications:

 physical models

 mathematical signal representations

 handcrafted calculations

Examples: DTI, DKI, NODDI, …

 models are handcrafted, thus suboptimal  information loss

 preliminary model-specific disease-specific studies required

 not known how model parameters would respond to previously 
unseen microstructural changes

 not known whether unstudied changes would go undetected

Model-Free
Direct estimation of tissue properties from 
raw q-space signal

+ no model simplicity, no model 
suboptimality  no information loss [1,2]

Fitting-Based

(currently used 
almost everywhere)
Fitting of model parameters

 unstable, ill-posed, 
susceptible to noise

 requires low model 
complexity [3]

 information loss

 requires many 
samples

 long scans

 high costs

 inapplicable if time 
is an issue

Fitting-Free

Analytical 
Solutions

Fitting replaced by 
closed-form formulas 
[4,5]

+ very short scans

+ fast processing

 limited to specific 
measures and 
sampling schemes

Approximation
Fitting replaced by 
deep learning [1,2]

+ optimal (minimizes 
training error)

+ very short scans

+ fast processing

+ arbitrary measures 
and sampling 
schemes

Novelty-Based

(proposed 
here)

Detection of any 
deviations from a 
reference (healthy) 
database

+ abnormal data not 
required for 
training

Supervised / 
Label-Based

Deep learning to 
estimate tissue type 
directly [1,2]

+ optimal (minimizes 
training error)

 requires disease-
specific labeled 
training data

Novelty Detection

 Scale the training data to interval [0;1]

 Apply same transformation to test data

 Let 𝑌 be the set of “normal” reference data and 
𝑟 𝑥 the novelty score of tested data point 𝑥

 Different novelty detection methods [6,7]:

 Euclidean distance to nearest “normal” 
neighbor:

𝑟 𝑥 = min
𝑦∈𝑌
𝑥 − 𝑦 2 .

We use a fast implementation of pairwise 
distances, vectorization, and splitting of the 
data into smaller chunks.

 𝑘-nearest-neighbors (𝑘-NN) approach [8]:

𝑟 𝑥 =
1

𝑘
 
𝑦∈𝑁𝑘(𝑥)

𝑥 − 𝑦 2 ,

where 𝑁𝑘(𝑥) is the set of the 𝑘 nearest 
neighbors of 𝑥 among 𝑌

(𝑘-NN corresponds to nearest neighbor
for 𝑘 = 1)

 One-class SVM [10] with various parameter 
sets

Methods: Model-Free Novelty-Based Diffusion MRI

 Construct database of healthy (or otherwise “uninteresting”/“normal”) data

 Novelty detection methods (see box) detect deviation from the “normal” database → disease (here: multiple sclerosis)

 One data sample is one voxel; its 𝑛 features are the raw q-space measurements collected into a feature vector 𝑥

 Data: Multiple sclerosis patients, 3T, 32-channel head coil, EPI, DSI random sampling, 167 q-space samples, 
bmax=3000s/mm², TE=80.3ms, TR=5.4s, FOV = 24×24×12cm, voxel iso 2.5mm, ASSET factor 2, FLAIR/T1w/T2w for 
validation of diffusion-based lesion segmentation, FSL topup

Results
(a) State-of-the-art automatic segmentation (based on non-diffusion images with spatial priors)

(b) Proposed novelty-based segmentation (based on diffusion images without spatial priors)

(c) Receiver operating characteristic; area under the curve (AUC): 0.82

All novelty detection methods yield similarly good lesion detection and AUC (except kernel density methods, see paper)

Discussion & Conclusions

 If a disease affects the q-space signal in a measurable way, the proposed method will mark it as a 
deviation from normal data

 No models, avoidance of drawbacks of model-based methods

 No requirement for prior knowledge about the impact of microstructural changes on the signal

 Potential for automatic detection of understudied abnormalities

 Combination with additional imaging contrasts is straightforward

 “Uninteresting” database can be constructed in other ways: known diseases, process of elimination…

 Anomaly detection (as opposed to novelty detection) to check the database consistency

 Fitting-free and model-free approaches have high potential


