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q-Space Deep Learning: Twelve-Fold Shorter
and Model-Free Diffusion MRI Scans
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Abstract—Numerous scientific fields rely on elaborate but partly
suboptimal data processing pipelines. An example is diffusion
magnetic resonance imaging (diffusion MRI), a non-invasive
microstructure assessment method with a prominent application
in neuroimaging. Advanced diffusion models providing accu-
rate microstructural characterization so far have required long
acquisition times and thus have been inapplicable for children
and adults who are uncooperative, uncomfortable, or unwell.
We show that the long scan time requirements are mainly due to
disadvantages of classical data processing. We demonstrate how
deep learning, a group of algorithms based on recent advances
in the field of artificial neural networks, can be applied to reduce
diffusion MRI data processing to a single optimized step. This
modification allows obtaining scalar measures from advanced
models at twelve-fold reduced scan time and detecting abnormal-
ities without using diffusion models. We set a new state of the
art by estimating diffusion kurtosis measures from only 12 data
points and neurite orientation dispersion and density measures
from only 8 data points. This allows unprecedentedly fast and
robust protocols facilitating clinical routine and demonstrates
how classical data processing can be streamlined by means of deep
learning.
Index Terms—Artificial neural networks, diffusion kurtosis

imaging (DKI), diffusion magnetic resonance imaging (diffu-
sion MRI), neurite orientation dispersion and density imaging
(NODDI).

I. INTRODUCTION

O VER the past three decades, diffusion magnetic reso-
nance imaging (diffusion MRI) [1]–[4] has taken on an

important role in assessing microstructural tissue and material
properties non-invasively based on the diffusion of gases and
liquids, primarily water. In radiology, diffusion MRI is a pow-
erful technique, mainly due to its sensitivity to diffusion re-
striction (e.g., caused by brain ischemia), yet also any other
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microstructural tissue rebuilding as found in neoplasms or in-
flammatory lesions. Its potential as a basis for diagnostic and
treatment monitoring markers has been established over the last
years [5]–[8]. Advanced diffusion MRI models such as diffu-
sion kurtosis imaging [2], [3] (DKI) and neurite orientation dis-
persion and density imaging [4] (NODDI) provide more accu-
rate characterization of tissue microstructure [2], [4], [9]–[11]
but require long acquisition time. This has so far led to high scan
costs and has made advanced diffusion models inapplicable for
patients who are uncooperative, uncomfortable or unwell.

A. Model Fitting, Analytical Solutions, Approximation

In diffusion MRI, a number of diffusion-weighted images
(DWIs) for different diffusion weightings1 and directions (con-
stituting the so-called three-dimensional q-space) are acquired
[1]. Signal intensity in these images contains information re-
garding diffusion properties. The task in quantitative diffusion
MRI is to find a mapping from a limited number of noisy signal
samples to rotationally invariant scalar measures that quantify
microstructural tissue properties. This inverse problem is solved
in each image voxel. Currently, this problem is addressed by
three approaches.
The classical approach of estimating scalar measures is model

fitting. Its data processing pipeline consists of fitting [12] a dif-
fusion model and calculating rotationally invariant measures
from the fitted model parameters. Prior to model fitting, the
q-space data can be obtained by regular acquisition, or using
advanced methods such as compressed sensing or dictionary
learning (cf. below).
Another approach can be taken if closed-form analytical

solutions exist. For the diffusion model of DKI [2], [3]–which
requires approximately 150 DWIs [3], [13], [14]–it has recently
been shown [15], [16] that for certain DKI-based measures
much fewer DWIs (e.g., 13 or 19 DWIs) are sufficient, and that
these measures can be analytically calculated from the data in
a single step. This has led us to the assumption that for many
other scalar measures and tissue properties the most relevant
information might as well be recovered from only a few DWIs.
The third approach of calculating scalar measures is approx-

imation, particularly machine learning. Simulations of simpli-
fied tissue models with extensive sets of diffusion weightings
[17], [18] indicate that standard model fitting procedures can
be replaced by approximation methods. It was also mentioned

1For simplicity, we also include images with diffusion weighting zero into
the definition of “DWIs”.
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Fig. 1. Possible steps of data processing from scanning a real-world subject (left) to the determination of the tissue properties (right). Standard DKI/NODDI
pipeline is shown individually (a) and in comparison to advanced methods (b). Arrows designate possible data processing in the standard pipelines (solid red),
state-of-the-art methods based on compressed sensing and machine learning (dash-dotted black) and novel processing possibilities introduced with q-space deep
learning (dashed green), see also [24].

[18] that feature selection methods could be applied to iden-
tify the most relevant DWIs in order to reduce these extensive
sets of diffusion weightings. On the basis of these observa-
tions, we apply deep learning [19]–[23] for accurate approxi-
mation and present a deep learning framework for different in-
puts (full and subsampled sets of regular DWIs, non-diffusion
contrasts) and different outputs (denoising, missing DWI re-
construction, scalar measure estimation, tissue segmentation).
Scalar measure estimation from twelve-fold accelerated ac-
quisition is demonstrated on two advanced models: DKI [2]
(using radial kurtosis and fractional kurtosis anisotropy) and
NODDI [4] (using orientation dispersion index and intracel-
lular volume fraction). In comparison to most of the well-es-
tablished models (e.g., diffusion tensor imaging [1]), DKI and
NODDI are more elaborate and thus can provide improved
sensitivity [2], [4], [9]–[11]; however, they also require con-
siderably longer acquisition times. By shortening the acquisi-
tion duration of advanced models by an order of magnitude,
we strongly improve their potential for clinical use, and reduce
scan costs and motion artifacts caused by long scan durations.

B. Advantages of Deep Learning

Deep learning [19]–[23] is a family of algorithms for effi-
cient learning of complicated dependencies between input data
and outputs by propagating a training dataset through several
layers of hidden units (artificial neurons). Each layer is a data
transformation step. The classical diffusion MRI pipeline in-
volving model fitting also consists of several steps. In the ex-
ample of DKI, approximately 150 measurements [3], [13], [14]
are reduced to 22 model parameters in the classical pipeline,

then to a few rotationally invariant measures, and finally (im-
plicitly or explicitly) to one parameter, i.e., the tissue property
of interest such as the amount of disease-based microstructural
change. (For NODDI, rotationally invariant measures are esti-
mated during model fitting rather than in an additional step, see
Fig. 1(a). In every step, information is partly lost by reducing
the degrees of freedom. However, the classical pipeline does
not provide feedback from the later steps to the earlier steps
with regard to what part of the information should be retained or
discarded and which transformations should be applied. Thus,
the pipeline relies on handcrafting and fixing each step, i.e.,
the diffusion model and derived scalar measures. Deep learning
takes a more flexible approach: the effects of each layer on the
final result are propagated back to adjust preceding layers, such
that all layers are optimized jointly in terms of the final ob-
jective, namely minimizing the output error. This prevents the
loss of information during intermediate steps. Advantages of
deep learning over handcrafted features have been shown in nu-
merous other applications [23].
The main novelties introduced herein are:
• Using subsampled DWIs as machine learning input
directly,

• Unprecedented scan time reduction for DKI and NODDI,
• Segmentation without using diffusion models.
Preliminary results presented at a conference [24] are herein

extended by additional evaluation, including the influence of
neural network parameters, and more2. Related applications of

2This paper has supplementary downloadable material available at http://iee-
explore.ieee.org, provided by the authors. This includes additional methods and
experiments.
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machine learning are tractography [25] and non-diffusion MRI
[26].

II. MATERIALS AND METHODS

The relationship between the diffusion-weighted signal and
microstructural tissue properties is non-trivial. However, an ap-
propriately chosen, tuned and trained machine learning algo-
rithm can theoretically represent any relationship between in-
puts and outputs [27] if such a relationship exists. We make use
of this fact in order to leverage information contained in very
limited numbers of input DWIs. In all experiments presented
in this work, training datasets originate from a different human
subject than the test datasets. The proposed family of methods is
termed “q-space deep learning” (q-DL). In q-DL, we treat each
image voxel individually as a data sample.
The task of estimating the vector of scalar measures from

the vector of signal measurements can be formalized as fol-
lows. The analytical solution is as simple as calculating ,
where is the closed-form function that maps to . Such
closed-form solutions are available only for certain measures
and certain diffusion weightings [15], [16]. In model fitting,
is estimated as , where are the estimated dif-
fusion model parameters obtained through model fitting by
solving an optimization problem, e.g., least squares [12], and
calculates rotationally invariant scalar measures from . In

DKI, the steps of applying and are independent and not op-
timized jointly with respect to the accuracy of estimation of ;
in NODDI, and are one joint step; in all cases, fitting is sus-
ceptible to noise. In contrast, q-DL adjusts the parameters of a
multilayer neural network such that the outputs of the network
well approximate the target measures . The measures are
obtained for the training dataset by model fitting, but model fit-
ting is not required for the datasets to which the trained network
is subsequently applied.

A. Feed-Forward Neural Networks
A so-called multilayer perceptron is a multilayer artificial

neural network that performs a nonlinear data transformation in
each layer. Layer 0 is called the input layer, layer the output
layer, intermediate layers are called hidden layers. The transfor-
mation in layer follows the rule

(1)

where is the output vector of layer for data sample , the
vector is the input of the network, is called the weight
matrix, the bias vector, and are nonlinearities (see below).
The length of the vector corresponds to the number of artifi-
cial neurons (hidden units) in layer . During training, all weight
matrices and bias terms are jointly adjusted such that the output
vectors for each training sample (in our case: each image
voxel ) well approximate the target output vectors . This ad-
justment is achieved by using the backpropagation algorithm
(implemented in the deep learning toolbox [28]) to solve the
optimization problem

(2)

where the sum of errors is taken over all training samples , and
the outputs recursively depend on the parameters and

according to the aforementioned recursive transformation
rule for the for . Once trained, such a neural
network works in a deterministic manner.

B. q-Space Deep Learning
The proposed pipelines based on q-space deep learning re-

duce scan duration and perform the data processing as directly
as possible without discarding information at intermediate steps.
This is reflected in the comparison of q-DL to the standard
pipeline and to other state-of-the-art methods in terms of pos-
sible steps of data processing (Fig. 1). Previous methods based
on machine learning rely either on extensive acquisitions or on
intermediate steps involving model fitting based on diffusion
tensor imaging (DTI) and spherical harmonics (SH), whereas
q-space deep learning provides the fastest acquisitions and the
most direct data processing steps.
In all experiments, training data originate from different

human subjects than test data. The neural networks thus do
not “know” the true output vectors of the test data but rather
estimate them based on the input-output-mapping learned from
training data. Each voxel is treated individually as a data
sample. The algorithm does not know its location in the image.
We introduce several input-output-mapping tasks. Different
deep networks are trained for different tasks:
1) Estimation of Scalar Measures: A network is trained to

predict microstructure-characterizing scalar measures di-
rectly from the (reduced set of) DWIs where is a pseu-
dorandom subsampling multi-index (such that the q-space sam-
pling is consistent across training and test data). In other words,
inputs are with length , and targets are .
The length of the output vector is the number of considered
scalar measures. Training targets are obtained from a
fully sampled training dataset (consisting of DWIs)
by model fitting; however, a neural network is trained to predict

from the subsampled data . As a consequence, the neural
network is able to estimate from -subsampled datasets.
This allows an estimation of at a scan time reduction factor
of for all subsequent datasets. In our experiments, we use
scan time reduction factors of up to
for DKI and up to for NODDI.
2) Model-Free Segmentation: Tissue segmentation is

achieved by training a neural network to discriminate between
several tissue types. We propose modifying the approach [29] of
multi-parametric MRI tissue characterization by artificial neural
networks such that the DWIs are directly used as inputs rather
than using scalar measures obtained from model fitting. Our
approach thus allows using the unique information provided by
diffusion MRI directly without the information reduction im-
posed by models. State-of-the-art automatic segmentation [30],
[31] (based on non-diffusion images with spatial priors) into
healthy white matter (WM), grey matter (GM), cerebrospinal
fluid (CSF) and multiple sclerosis lesions was used as ground
truth for our proof-of-concept model-free segmentation (based
on diffusion images without spatial priors). The q-DL frame-
work allows incorporating additional contrasts other than DWIs
as inputs to the learning algorithm. We used fluid-attenuated
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Fig. 2. Maps of radial kurtosis in the human brain for various methods and
MRI scan acceleration factors. From left to right: 288, 40, 25 and 12 randomly
selected DWIs are used. Model fitting followed by radial kurtosis calculation
(a-d), and q-DL for radial kurtosis approximation (e-h) are compared. Model
fitting is outperformed by the proposed method.

inversion recovery (FLAIR) signal as an additional input. The
length of the output vector is the number of tissue classes
(with each output representing a relative class membership
“likeliness” using softmax, see below).

C. Details of the Neural Networks

The deep learning toolbox [28] was used for deep learning
experiments. The artificial neural network used is a multi-
layer perceptron with three hidden layers, each consisting of
150 hidden units with a nonlinearity known as the rectified
linear unit [19], [20], i.e., . This layout,
applied to each image voxel independently, can be considered
a convolutional neural network with window size 1 1 in each
layer, masking out the loss for non-brain voxels. Linear units

are used in the output layer for fitting tasks
and softmax outputs for classi-
fication tasks. Each input and output of the neural network is
independently scaled to the interval and the same affine
transformation parameters are reused for the test datasets. The
network is initialized with orthogonal random weights [22]. We
use a dropout [21] fraction of 0.1, stochastic gradient descent
with momentum 0.9, minibatch size 128, learning rate 0.01
with a warm-up learning rate of 0.001 for the first 10 epochs.
The learning rate was decreased by factor 0.9 whenever the
training set error stagnated (averaged over 5 epochs) compared
to the previous 5 epochs. To prevent overfitting, 10% of the
voxels in the training data set were used as a validation set and
early stopping was employed when the validation set error (av-
eraged over 10 epochs) increased compared to the average over
the previous 10 epochs. These choices of the neural network
parameters are based on practical considerations as described
in [32]. We use a multilayer perceptron because it is a straight-
forward and powerful method. Three hidden layers provide
acceptable results and short runtime for our purposes. Other
network settings are evaluated in Fig. 6. In all experiments,
training data originate from different human subjects than test
data (except Fig. 12, panels (e,k,q,v)). For different q-space
sampling schemes, the values of the network inputs (signal
intensities) have a different meaning (and length), therefore
a different network must be trained independently for every
q-space scheme.

Fig. 3. Same as Fig. 2 (different scanner, different volunteer), including a com-
parison to compressed sensing (e-h). Required scan time for each sampling
scheme is shown in seconds per slice. Model fitting and compressed sensing
are outperformed by the proposed methods.

Fig. 4. Same as Fig. 2 for neurite orientation dispersion index based on
NODDI. The proposed method better preserves contrast at short scan times.

Fig. 5. Root-mean-squared error for different methods and different numbers
of DWIs; estimation of radial kurtosis (a), fractional kurtosis anisotropy (b),
intra-cellular volume fraction (c), and neurite orientation dispersion index (d);
comparison of two different methods: model fitting (red) and q-DL (blue). Ref-
erence standard is model fit of nine independent repetitions, i.e., 1422 DWIs,
registered to the test data. For DKI measures (a,b), model fitting is always out-
performed by q-DL. For NODDI measures (c,d), model fitting is outperformed
by q-DL if less than 70 DWIs are used.
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Fig. 6. Correlation of radial kurtosis estimations using different dropout frac-
tions and layer sizes for q-DL from 12 DWIs with radial kurtosis from fully
sampled (148 DWIs) model fitting.

D. Data
Approval by the local ethics board for the in vivo study pro-

tocols and prior informed consent were obtained. In the mul-
tiple sclerosis data, datasets from five patients were used for
training, and the dataset of the respective sixth patient was used
for testing (in all combinations). In all other datasets, data from
one healthy volunteer was used for training, and data from an-
other healthy volunteer for testing.
1) Five-Shell and Cartesian Healthy Volunteer Data: Data

sets of a total of two healthy volunteers were acquired using
the common radial q-space scheme with 30 directions sam-
pled on five shells
and eight images. Ten repetitions of this scheme
were acquired for each volunteer. Besides, Cartesian
sampling [33] (515 points, ) was
also performed. Echo-planar imaging was performed
using a 3T GE MR750 MR scanner (GE Healthcare,
Waukesha, WI, USA) equipped with a 32-channel head coil
( ,
isotropic voxel size 2.5 mm, ASSET factor 2). All data under-
went FSL topup distortion correction [34], [35]. All DWIs were
registered using an affine transformation [36] to compensate
for motion. Advanced treatment of motion is subject of future
work. Each volunteer data set contained approximately 40,000
brain voxels (i.e., training/test samples).
2) Three-Shell Healthy Volunteer Data: Data sets of a total

of four healthy volunteers were acquired using a scheme op-
timized [13], [14] for DKI and suitable for NODDI [4]: three
shells with 25, 40, 75 directions,
respectively, and eight images. Acquisition parameters
and postprocessingwere the same as for the five-shell and Carte-
sian acquisitions.
3) Human Connectome Project Data: To demonstrate feasi-

bility on a different scanner with different acquisition parame-
ters, we used data sets of a total of two healthy volunteers from
the Human Connectome Project (HCP) [37]–[44].
4) Multiple Sclerosis Data: For tissue segmentation and

lesion detection, six multiple sclerosis patients were scanned
using a diffusion spectrum [33] random subsampling pattern
with 167 DWIs ( , ,

, , isotropic voxel
size 2.5 mm, ASSET factor 2).

E. Experiments
In all experiments, training data originate from different

human subjects than test data. Estimation of scalar measures
based on q-DL was performed on the five-shell, three-shell
and HCP data for all subsampling sizes from n down to 8
(as well as down to 1 for error evaluation). DKI-based radial
kurtosis [45] was estimated for HCP data and five-shell data.
Different networks were trained for these different q-space sam-
pling schemes. NODDI-based neurite orientation dispersion
index [4] was estimated for three-shell data. State-of-the-art
model fitting [4], [12] (own implementation for DKI; NODDI
Matlab toolbox for NODDI) and compressed sensing (CS) for
Cartesian schemes based on dictionary learning [46] (followed
by model fitting) were performed for comparison because they
are the currently used approaches to estimate model-based mea-
sures (CS was applied to registered Cartesian data of the same
volunteer). Model fitting of one fully sampled scan was used
on the training set to generate output targets for q-DL training.
The quality of the methods on the test data was evaluated in
terms of root-mean-squared error:

(3)

where the sum is taken over all voxels, the are the re-
sults being evaluated, and the model fit of the nine additional
independent repetitions of the scan was used for ground truth

(“reference standard”). The five-shell data were used for
this evaluation. The fraction of voxels for which the q-DL value
was close to the reference standard value was calculated for
the different scalar measures. In addition to the neural network
settings described above, different numbers of units per hidden
layer (between 50 and 750 in steps of 100) and different dropout
fractions (between 0 and 0.5 in steps of 0.05) were compared.
Using the three-shell datasets of four volunteers, the influence
of three different training datasets on the same test dataset was
compared, with reference standard obtained from fully-sampled
model fitting.
Model-free segmentation was applied to the multiple scle-

rosis data. State-of-the-art automatic segmentation [30], [31]
into lesions, healthy WM, GM and CSF based on non-diffusion
images with spatial priors (see supporting information for de-
tails) was used as ground truth for our proof-of-concept model-
free segmentation including diffusion images without spatial
priors. The ground truth of the training data was used as output
targets during training; the ground truth of the test data was used
for segmentation quality evaluation. Segmentation quality was
evaluated using the area under the curve (AUC) of the receiver
operating characteristic (ROC). The deep learning models pre-
sented here cannot be more knowledgeable than the technique
used to generate the labels.

III. RESULTS AND DISCUSSION

Figs. 2–5 compare the estimation of scalar measures pro-
duced by different methods. We show DKI-based radial
kurtosis [45] of HCP data in Fig. 2 and of five-shell data in
Fig. 3 (with compressed sensing (CS) [46] applied to Carte-
sian data of the same volunteer in Figs. 3(e)–3(h) as well
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as NODDI-based neurite orientation dispersion index [4] of
three-shell data in Fig. 4. State-of-the-art model fitting [4], [12]
(Figs. 2(a)–2(d), 3(a)–3(d), 4(a)–4(d)), CS (Figs. 3(e)–3(h)),
and q-DL (Figs. 2(e)–2(h), 3(j)–3(m), 4(e)–4(h)) are compared.
Several numbers of used DWIs are compared, ranging from
full sampling to 12-fold reduced scan time (scan time is shown
in seconds per image slice).
Compared with the standard pipeline, results of q-DL exhibit

feasibility of scan time reduction by a factor of twelve. Thus,
protocols lasting about 30 minutes (Figs. 2–4 panel a) can be
reduced to 2.5 minutes, strongly improving clinical feasibility.
Fig. 5 compares the methods in terms of root-mean-squared

error. This represents a quantitative evaluation of the results
presented in Figs. 2–4. For DKI measures, q-DL always out-
performs model fitting (Figs. 5(a), 5(b)). Model fitting of 158
DWIs (error: 0.306 (Fig. 5(a)), 0.195 (Fig. 5(b))) is even out-
performed by q-DL of 12 DWIs (error: 0.272 (Fig. 5(a)), 0.150
(Fig. 5(b))). For NODDI measures, q-DL outperforms model
fitting when less than 70 DWIs are used (Figs. 5(c), 5(d)).
These curves demonstrate the trade-off between scan duration

and quality provided by q-DL. Particularly, twelve-fold reduced
scan time provides an error magnitude similar to that of model
fitting at full scan time (and for DKI-based measures even lower
than that of model fitting at full scan time).
For each number of subsampled DWIs, the subsampling was

performed randomly and completely independently (but equally
for the three compared methods). Thus, oscillations (amplitude
of fluctuation) of the curves in Fig. 5 demonstrate the impact of
random subsampling. Not all random subsamplings are equally
useful. Among the compared methods, q-DL is most stable
with respect to the choice of the samples, whereas model fitting
decreases in stability (from very stable to unstable) with de-
creasing number of DWIs. Analogous variation was observed
for repetitions of random subsampling instantiations when the
number of DWIs was held constant (not shown).
For model fitting of 158 DWIs, 95.0% of all voxels had a

value within the interval (where is the reference
standard value) for radial kurtosis. The ratio was comparably
high at 94.7% for q-DL of only 12 DWIs. For fractional kurtosis
anisotropy, 81.0% of all voxels in model fit of 158 DWIs had a
value in the interval , whereas for q-DL of only 12
DWIs the ratio was as high as 95.9%. Intracellular volume frac-
tion was estimated within by model fit of 158 DWIs
in 88.9% of all voxels, and by q-DL of 12 DWIs in 90.6%. For
neurite orientation dispersion index, the ratios were 79.3% and
85.3%, respectively. Thus, q-DL of as few as 12 DWIs provides
comparable, and often a better, proximity to the true value com-
pared to model fitting of as many as 158 DWIs.
Table I shows the effects of different random subsampling

schemes, training datasets and neural network initializations
on the error. All results are very similar; each training dataset
leads to good results. Accidental generation of a degenerate
subsampling scheme or degenerate network initialization is ex-
tremely improbable, has not been encountered in practice, and
can be easily checked for (using any qualitative or quantitative
experiment).
Fig. 6 shows the effect of neural network settings on the test

set quality, indicating that using at least 150 hidden units per

TABLE I
ERROR REPRODUCIBILITY

Fig. 7. Direct model-free tissue segmentation and lesion detection. When
learning to discriminate multiple sclerosis lesions (red), healthy WM, GM and
CSF based on DWIs and FLAIR, the proposed method segments the tissue
types well and reliably detects lesions without using any diffusion model.
Slices from datasets with the best (upper row, 0.938) and worst lesion AUC
(lower row, 0.878) are shown.

layer or a dropout [21] fraction of at least 0.05 improves the
performance of q-DL. Results of other quality measures such as
root-mean-squared deviation are analogous (not shown). Note
that we merely compare the effect of different parameters on
the test set, rather than performing definitive hyper-parameter
fitting on a validation set.
The final application of q-DL presented here is tissue seg-

mentation and lesion detection. This task is achieved by training
the neural network to discriminate between several tissue types
based on the diffusion-weighted signal from the DWIs. In a
proof-of-concept experiment, we used segmentation into WM,
GM, CSF and multiple sclerosis lesions. Segmentation results
from q-DL are shown in Fig. 7. The AUC of the ROC for le-
sions ranged between 0.878 and 0.938 for six different patients.
AUC for WM, GM and CSF was consistently above 0.894 for
all patients. Thus, DWIs can be used directly for segmentation
without a diffusion model, i.e., without the intermediate infor-
mation loss detailed in Section I-B. Tailoring the protocol to op-
timal results in specific applications is subject of future research.
Other previously proposed methods, including machine

learning methods [17], [18], [47]–[49] as well as state-of-the-art
compressed sensing [50] require more DWIs and several
intermediate steps (see Fig. 1(b)). For the number of DWIs
suggested for different methods, see Table II. Most notably,
compressed sensing and machine learning publications suggest
using 64 DWIs for DKI [50] and 30 DWIs for NODDI [48],
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TABLE II
COMPARISON OF REQUIRED NUMBER OF DWIS

whereas our methods work with only 12 DWIs for DKI and 8
DWIs for NODDI. Previous work that uses the DWIs directly
as inputs to machine learning for tissue characterization [17],
[18] does not only use large numbers of DWIs but is also
limited so far to Monte Carlo simulations only, rather than in
vivo experiments. A related idea is the use of DWIs directly as
inputs to machine learning for tractography [25].
When switching to another scanner such that the DWI inten-

sities are not the same anymore, the intensities should either be
normalized or the network should be retrained. The same holds
for changes in acquisition parameters such as echo time. A net-
work that is able to understand data from different settings is
subject of future research.
In all presented applications, neural network training takes

about one minute on a desktop computer. The network needs
to be trained only once and can be applied to any number of
datasets, taking 0.03 seconds per dataset, as opposed to several
minutes per dataset required bymost model fitting methods. An-
alytical solutions [15], [16] of scalar measure estimation pro-
vide acceleration of acquisition and processing comparable to
q-DL, but are limited to specific scalar measures and acquisi-
tion schemes. With q-DL, the acceleration factor can be freely
chosen and all scalar measures can be obtained simultaneously.
There is also freedom in the choice of the sampling; in partic-
ular, random sampling yields robust results.

IV. CONCLUSIONS
The presented scan acceleration factor twelve sets a new state

of the art in DKI and NODDI and thus opens new perspec-
tives for clinical protocols. The results indicate that a consider-
able amount of information is contained in a limited number of
DWIs, and that this information can be better retrieved by deep
learning than by model fitting. The number of used DWIs can
be freely chosen and represents a better trade-off between scan
duration and quality than provided by conventional methods.
Our framework for model-free diffusion MRI can be used

to estimate arbitrary tissue properties in various settings where
ground truth training datasets are available. Future research may
focus on creating ground truth training data from simulations,
scanned phantoms and histologically validated data. Moreover,
model-free q-space novelty detection (q-ND) without require-
ment for lesion labels has also been demonstrated [51]. q-ND

and q-DL are the first model-free diffusion MRI segmentation
methods, meaning that they use q-space data directly and do not
partly discard information at intermediate steps.
Recent work [52] indicates that the complexity of

state-of-the-art diffusion models is at the limit of allowing a
stable model fit to the noisy diffusion MRI data obtained in an
acceptable scan duration. Herein we demonstrate the fact that
omitting model fitting allows considerably more stable measure
estimation at short scan durations; this might circumvent the
fitting stability “bottleneck” when balancing scan duration
against model complexity.
Classical quantitative diffusionMRI requires creating a diffu-

sion model that well captures disease-related tissue changes via
its associated scalar measures. Subsequently, a set of MRI con-
trasts needs to be chosen (diffusion-weighted gradient strengths
and durations, single-pulsed or other gradient forms, non-dif-
fusion sequences) that allow estimating all parameters of the
model. The presented segmentation and abnormality detection
method on the other hand is concerned with finding a set of con-
trasts whose signal “vector” (signal values from all contrasts) is
most strongly affected by disease.3 Simulational tissue models
can still drive the design of meaningful gradient forms, but sub-
sequent experiments do not rely on any model—particularly,
model parameters do not have to be estimated. This allows fu-
ture research to explore experiment design using elaborate sim-
ulational tissue models with large numbers of microstructural
parameters. In this framework, model complexity is not limited
by ill-posedness of subsequent model parameter estimation.
A combination of q-DL (requiring twelve times less DWIs

than standard methods for estimation of arbitrary scalar mea-
sures) with simultaneous multi-slice imaging [39] (three-fold
accelerated acquisition of the DWIs) in future applications is
straightforward, yielding an unprecedented 36-fold scan time
reduction.
Our recommendation in the short term is to use short acquisi-

tions with q-DL instead of long acquisitions with fitting. In the
long term, we recommend creating complex tissue models that
are not limited by fitting instabilities; as well as using model-
free q-DL tissue characterization.
The capability of q-DL to accelerate the acquisition by an

order of magnitude and detect tissue changes without a diffu-
sion model opens new perspectives for research in quantitative
diffusion MRI and demonstrates the benefits of deep learning
for multi-step data processing pipelines.
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