Sublabel-Accurate Convex Relaxation of Vectorial Multilabel Energies - Supplementary Material -

Emanuel Laude ${ }^{\star 1}$, Thomas Möllenhoff ${ }^{\star 1}$, Michael Moeller ${ }^{1}$, Jan Lellmann ${ }^{2}$, and Daniel Cremers ${ }^{1}$
${ }^{1}$ Technical University of Munich $\quad{ }^{2}$ University of Lübeck

1 Theory

Proof (Proof of Proposition 1). By definition the biconjugate of $\boldsymbol{\rho}$ is given as

$$
\begin{align*}
\boldsymbol{\rho}^{* *}(\boldsymbol{u}) & =\sup _{\boldsymbol{v} \in \mathbb{R}^{|\mathcal{V}|}}\langle\boldsymbol{u}, \boldsymbol{v}\rangle-\left(\min _{1 \leq i \leq|\mathcal{T}|} \boldsymbol{\rho}_{i}(\boldsymbol{v})\right)^{*} \tag{1}\\
& =\sup _{\boldsymbol{v} \in \mathbb{R}^{|\mathcal{V}|}}\langle\boldsymbol{u}, \boldsymbol{v}\rangle-\max _{1 \leq i \leq|\mathcal{T}|} \boldsymbol{\rho}_{i}^{*}(\boldsymbol{v}) .
\end{align*}
$$

We proceed computing the conjugate of $\boldsymbol{\rho}_{i}$:

$$
\begin{align*}
\boldsymbol{\rho}_{i}^{*}(\boldsymbol{v}) & =\sup _{\boldsymbol{u} \in \mathbb{R}^{|\mathcal{V}|}}\langle\boldsymbol{u}, \boldsymbol{v}\rangle-\boldsymbol{\rho}_{i}(\boldsymbol{u}) \\
& =\sup _{\boldsymbol{\alpha} \in \Delta_{n+1}^{U}}\left\langle E_{i} \alpha, \boldsymbol{v}\right\rangle-\rho\left(T_{i} \alpha\right) \tag{2}
\end{align*}
$$

We introduce the substitution $r:=T_{i} \alpha \in \Delta_{i}$ and obtain

$$
\begin{equation*}
\alpha=K_{i}^{-1}\binom{r}{1}, \quad K_{i}:=\binom{T_{i}}{\mathbf{1}^{\top}} \in \mathbb{R}^{n+1 \times n+1} \tag{3}
\end{equation*}
$$

since K_{i} is invertible for $(\mathcal{V}, \mathcal{T})$ being a non-degenerate triangulation and $\sum_{j=1}^{n+1} \alpha_{j}=$ 1. With this we can further rewrite the conjugate as

$$
\begin{align*}
\cdots & =\sup _{\boldsymbol{r} \in \Delta_{i}}\left\langle A_{i} r+b_{i}, E_{i}^{\top} \boldsymbol{v}\right\rangle-\rho(r) \\
& =\left\langle E_{i} b_{i}, \boldsymbol{v}\right\rangle+\sup _{r \in \mathbb{R}^{n}}\left\langle r, A_{i}^{\top} E_{i}^{\top} \boldsymbol{v}\right\rangle-\rho(r)-\delta_{\Delta_{i}}(r) \tag{4}\\
& =\left\langle E_{i} b_{i}, \boldsymbol{v}\right\rangle+\rho_{i}^{*}\left(A_{i}^{\top} E_{i}^{\top} \boldsymbol{v}\right) .
\end{align*}
$$

[^0]Proof (Proof of Proposition 2). Define $\boldsymbol{\Psi}_{i, j}$ as
$\boldsymbol{\Psi}_{i, j}(\boldsymbol{p}):= \begin{cases}\left\|T_{i} \alpha-T_{j} \beta\right\| \cdot\|\nu\| & \text { if } \boldsymbol{p}=\left(E_{i} \alpha-E_{j} \beta\right) \nu^{\top}, \alpha, \beta \in \Delta_{n+1}^{U}, \nu \in \mathbb{R}^{d} \\ \infty & \text { otherwise } .\end{cases}$
Then, $\boldsymbol{\Psi}$ can be rewritten as a pointwise minimum over the individual $\boldsymbol{\Psi}_{i, j}$

$$
\begin{equation*}
\boldsymbol{\Psi}(\boldsymbol{p})=\min _{1 \leq i, j \leq|\mathcal{T}|} \boldsymbol{\Psi}_{i, j}(\boldsymbol{p}) \tag{6}
\end{equation*}
$$

We begin computing the conjugate of $\boldsymbol{\Psi}_{i, j}$

$$
\begin{align*}
\boldsymbol{\Psi}_{i, j}^{*}(\boldsymbol{q}) & =\sup _{\boldsymbol{p} \in \mathbb{R}^{d \times|\mathcal{V}|}}\langle\boldsymbol{p}, \boldsymbol{q}\rangle-\boldsymbol{\Psi}_{i, j}(\boldsymbol{p}) \\
& =\sup _{\alpha, \beta \in \Delta_{n+1}^{U}} \sup _{\nu \in \mathbb{R}^{d}}\left\langle Q_{i} \alpha-Q_{j} \beta, \nu\right\rangle-\left\|T_{i} \alpha-T_{j} \beta\right\| \cdot\|\nu\| \tag{7}\\
& =\sup _{\alpha, \beta \in \Delta_{n+1}^{U}}\left(\left\|T_{i} \alpha-T_{j} \beta\right\| \cdot\|\cdot\|\right)^{*}\left(Q_{i} \alpha-Q_{j} \beta\right) \\
& =\delta_{\mathcal{K}_{i, j}}(\boldsymbol{q})
\end{align*}
$$

with the set $K_{i, j}$ being defined as

$$
\begin{equation*}
\mathcal{K}_{i, j}:=\left\{\boldsymbol{q} \in \mathbb{R}^{d \times|\mathcal{V}|} \mid\left\|Q_{i} \alpha-Q_{j} \beta\right\| \leq\left\|T_{i} \alpha-T_{j} \beta\right\|, \alpha, \beta \in \Delta_{n+1}^{U}\right\} \tag{8}
\end{equation*}
$$

Since the maximum over indicator functions of sets is equal to the indicator function of the intersection of the sets we obtain for $\boldsymbol{\Psi}^{*}$

$$
\begin{align*}
\boldsymbol{\Psi}^{*}(\boldsymbol{q}) & =\max _{1 \leq i, j \leq|\mathcal{T}|} \boldsymbol{\Psi}_{i, j}^{*}(\boldsymbol{q}) \tag{9}\\
& =\delta_{\mathcal{K}}(\boldsymbol{q})
\end{align*}
$$

Proof (Proof of Proposition 3). Let $\boldsymbol{q} \in \mathbb{R}^{d \times|\mathcal{V}|}$ s.t. $\left\|Q_{i} \alpha-Q_{j} \beta\right\| \leq\left\|T_{i} \alpha-T_{j} \beta\right\|$ for all $\alpha, \beta \in \Delta_{n+1}^{U}$ and $1 \leq i, j \leq|\mathcal{T}|$. For any $1 \leq i \leq|\mathcal{T}|$ define

$$
\begin{align*}
f_{i}: \mathbb{R}^{n} & \rightarrow \mathbb{R}^{n} \\
\left(\alpha_{1}, \ldots, \alpha_{n}\right) & \mapsto \sum_{l=1}^{n} \alpha_{l} t^{i_{l}}+\left(1-\sum_{l=1}^{n} \alpha_{l}\right) t^{i_{n+1}}=T_{i} \alpha \tag{10}
\end{align*}
$$

and analogously

$$
\begin{align*}
g_{i}: \mathbb{R}^{n} & \rightarrow \mathbb{R}^{|\mathcal{V}|} \\
\left(\alpha_{1}, \ldots, \alpha_{n}\right) & \mapsto \sum_{l=1}^{n} \alpha_{l} \boldsymbol{q}^{i_{l}}+\left(1-\sum_{l=1}^{n} \alpha_{l}\right) \boldsymbol{q}^{i_{n+1}}=Q_{i} \alpha \tag{11}
\end{align*}
$$

Fig. 1: Figure illustrating the second direction of the proof of Proposition 4. The gray dots and lines visualize the triangulation $(\mathcal{V}, \mathcal{T})$. The line segment between $T_{i} \alpha$ and $T_{j} \beta$ is composed of shorter line segments which are fully contained in one of the triangles. On each of the triangles the inequality (15) holds, which allows to conclude that it holds for the whole line segment.

Let us choose an $\alpha \in \mathbb{R}^{n}$ such that $\alpha_{i}>0, \sum_{l} \alpha_{l}<1$. Then $\left\|Q_{i} \alpha-Q_{j} \beta\right\| \leq$ $\left\|T_{i} \alpha-T_{j} \beta\right\|$ for all $\alpha, \beta \in \Delta_{n+1}^{U}$ and $1 \leq i, j \leq|\mathcal{T}|$ implies that

$$
\begin{equation*}
\left\|g_{i}(\alpha)-g_{i}(\alpha-h)\right\| \leq\left\|f_{i}(\alpha)-f_{i}(\alpha-h)\right\| \tag{12}
\end{equation*}
$$

holds for all vectors h with sufficiently small entries. Inserting the definitions of g_{i} and f_{i} we find that

$$
\begin{equation*}
\left\|Q_{i} D h\right\| \leq\left\|T_{i} D h\right\| \tag{13}
\end{equation*}
$$

holds for all h with sufficiently small entries. For a non-degenerate triangle, $T_{i} D$ is invertible and a simple substitution yields that

$$
\begin{equation*}
\left\|Q_{i} D\left(T_{i} D\right)^{-1} \tilde{h}\right\|_{2} \leq\|\tilde{h}\| \tag{14}
\end{equation*}
$$

holds for all \tilde{h} with sufficiently small entries. This means that the operator norm of $D_{\boldsymbol{q}}^{i}$ induced by the ℓ^{2} norm, i.e. the S^{∞} norm, is bounded by one.

Let us now show the other direction. For $\boldsymbol{q} \in \mathbb{R}^{d \times|\mathcal{V}|}$ s.t. $\left\|D_{\boldsymbol{q}}^{i}\right\|_{S^{\infty}} \leq 1,1 \leq$ $i \leq|\mathcal{T}|$, note that inverting the above computation immediately yields that

$$
\begin{equation*}
\left\|Q_{k} \alpha-Q_{k} \beta\right\| \leq\left\|T_{k} \alpha-T_{k} \beta\right\| \tag{15}
\end{equation*}
$$

holds for all $1 \leq k \leq|\mathcal{T}|, \alpha, \beta \in \Delta_{n+1}^{U}$. Our goal is to show that having this inequality on each simplex is sufficient to extend it to arbitrary pairs of simplices. The overall idea of this part of the proof is illustrated in Fig. 1.

Let $1 \leq i, j \leq|\mathcal{T}|$ and $\alpha, \beta \in \mathbb{R}^{n}$ with $\alpha_{l}, \beta_{l} \geq 0, \sum_{l} \alpha_{l} \leq \sum_{l} \beta_{l} \leq 1$ be given. Consider the line segment

$$
\begin{align*}
c(\gamma):[0,1] & \rightarrow \mathbb{R}^{d} \tag{16}\\
\gamma & \mapsto \gamma T_{j} \beta+(1-\gamma) T_{i} \alpha
\end{align*}
$$

Since the triangulated domain is convex, there exist $0=a_{0}<a_{1}<\ldots<a_{r}=1$ and functions $\alpha_{l}(\gamma)$ such that for $\gamma \in\left[a_{l}, a_{l+1}\right], 0 \leq l \leq r-1$ one can write $c(\gamma)=\gamma T_{j} \beta+(1-\gamma) T_{i} \alpha=T_{k_{l}} \alpha_{l}(\gamma)$ for some $1 \leq k_{l} \leq T$. The continuity of $c(\gamma)$ implies that $T_{k_{l}} \alpha_{l}\left(a_{l+1}\right)=T_{k_{l+1}} \alpha_{l+1}\left(a_{l+1}\right)$, i.e. these points correspond to both simplices, k_{l} and k_{l+1}. Note that this also means that $Q_{k_{l}} \alpha_{l}\left(a_{l+1}\right)=$ $Q_{k_{l+1}} \alpha_{l+1}\left(a_{l+1}\right)$. The intuition of this construction is that the $c\left(a_{l+1}\right)$ are located on the boundaries of adjacent simplices on the line segment. We find

$$
\begin{align*}
\left\|T_{i} \alpha-T_{j} \beta\right\| & =\sum_{l=0}^{r-1}\left(a_{l+1}-a_{l}\right)\left\|T_{i} \alpha-T_{j} \beta\right\| \\
& =\sum_{l=0}^{r-1}\left\|\left(a_{l+1}-a_{l}\right)\left(T_{i} \alpha-T_{j} \beta\right)\right\| \\
& =\sum_{l=0}^{r-1}\left\|a_{l+1} T_{i} \alpha-a_{l} T_{i} \alpha-a_{l+1} T_{j} \beta+a_{l} T_{j} \beta\right\| \\
& =\sum_{l=0}^{r-1}\left\|a_{l} T_{j} \beta+\left(1-a_{l}\right) T_{i} \alpha-\left(a_{l+1} T_{j} \beta+\left(1-a_{l+1}\right) T_{i} \alpha\right)\right\| \\
& =\sum_{l=0}^{r-1}\left\|T_{k_{l}} \alpha_{l}\left(a_{l}\right)-T_{k_{l}} \alpha_{l}\left(a_{l+1}\right)\right\| \tag{17}\\
& \left(155 \sum_{l=0}^{r-1}\left\|Q_{k_{l}} \alpha_{l}\left(a_{l}\right)-Q_{k_{l}} \alpha_{l}\left(a_{l+1}\right)\right\|\right. \\
& \geq\left\|\sum_{l=0}^{r-1}\left(Q_{k_{l}} \alpha_{l}\left(a_{l}\right)-Q_{k_{l}} \alpha_{l}\left(a_{l+1}\right)\right)\right\| \\
& =\left\|\sum_{l=0}^{r-1}\left(Q_{k_{l}} \alpha_{l}\left(a_{l}\right)-Q_{k_{l+1}} \alpha_{l+1}\left(a_{l+1}\right)\right)\right\| \\
& =\left\|Q_{k_{0}} \alpha_{0}\left(a_{0}\right)-Q_{k_{r}} \alpha_{r}\left(a_{r}\right)\right\| \\
& =\left\|Q_{i} \alpha-Q_{j} \beta\right\|
\end{align*}
$$

which yields the assertion.

Proof (Proof of Proposition 4). Let $\Delta=\operatorname{conv}\left\{t^{1}, \ldots, t^{n+1}\right\}$ be given by affinely independent vertices $t^{i} \in \mathbb{R}^{n}$. We show that our lifting approach applied to the label space Δ solves the convexified unlifted problem, where the dataterm was replaced by its convex hull on Δ. Let the matrices $T \in \mathbb{R}^{n \times(n+1)}$ and $D \in \mathbb{R}^{(n+1) \times n}$ be defined through

$$
T=\left(t^{1}, \ldots, t^{n+1}\right), D=\left(\begin{array}{ccc}
1 & & \tag{18}\\
& \ddots & \\
& & 1 \\
-1 & \ldots & -1
\end{array}\right), T D=\left(t^{1}-t^{n+1}, \ldots, t^{n}-t^{n+1}\right)
$$

The transformation $x \mapsto t^{n+1}+T D x$ maps $\Delta_{e}=\operatorname{conv}\left\{0, e^{1}, \ldots, e^{n}\right\} \subset \mathbb{R}^{n}$ to Δ. Now consider the following lifted function $\boldsymbol{u}: \Omega \rightarrow \mathbb{R}^{n+1}$ parametrized through $\tilde{u}: \Omega \rightarrow \Delta_{e}$:

$$
\begin{equation*}
\boldsymbol{u}(x)=\left(\tilde{u}_{1}(x), \ldots, \tilde{u}_{n}(x), 1-\sum_{j=1}^{n} \tilde{u}_{j}(x)\right) \tag{19}
\end{equation*}
$$

Consider a fixed $x \in \Omega$. Plugging this lifted representation into the biconjugate of the lifted dataterm ρ yields:

$$
\begin{align*}
\boldsymbol{\rho}^{* *}(\boldsymbol{u})= & \sup _{v \in \mathbb{R}^{n+1}}\langle\boldsymbol{u}, \boldsymbol{v}\rangle-\sup _{\alpha \in \Delta_{n+1}^{U}}\langle\alpha, \boldsymbol{v}\rangle-\rho(T \alpha) \\
= & \sup _{v \in \mathbb{R}^{n+1}}\left\langle\left(\tilde{u}_{1}(x), \ldots, \tilde{u}_{n}(x), 1-\sum_{j=1}^{n} \tilde{u}_{j}(x)\right), \boldsymbol{v}\right\rangle- \\
& \sup _{\alpha \in \Delta_{n+1}^{U}}\langle\alpha, \boldsymbol{v}\rangle-\rho(T \alpha) \\
= & \sup _{v \in \mathbb{R}^{n+1}}\left\langle\tilde{u}, D^{\top} \boldsymbol{v}\right\rangle+\boldsymbol{v}_{n+1}- \\
& \sup _{\alpha \in \Delta_{n+1}^{U}}\left\langle\left(\alpha_{1}, \ldots, \alpha_{n}, 1-\sum_{j=1}^{n} \alpha_{j}\right), \boldsymbol{v}\right\rangle- \\
& \rho\left(\sum_{j=1}^{n} \alpha_{j} t^{j}+\left(1-\sum_{j=1}^{n} \alpha_{j}\right) t^{n+1}\right) \\
= & \sup _{v \in \mathbb{R}^{n+1}}\left\langle\tilde{u}, D^{\top} \boldsymbol{v}\right\rangle+\boldsymbol{v}_{n+1}-\sup _{\alpha \in \Delta_{n+1}^{U}} \boldsymbol{v}_{n+1}+\left\langle\alpha, D^{\top} \boldsymbol{v}\right\rangle-\rho\left(t^{n+1}+T D \alpha\right) \tag{20}
\end{align*}
$$

Since D^{\top} is surjective, we can apply the substitution $\tilde{v}=D^{\top} \boldsymbol{v}$:

$$
\begin{align*}
\ldots & =\sup _{\tilde{v} \in \mathbb{R}^{n}}\langle\tilde{u}, \tilde{v}\rangle-\sup _{\alpha \in \Delta_{n+1}^{U}}\langle\alpha, \tilde{v}\rangle-\rho\left(t^{n+1}+T D \alpha\right) \tag{21}\\
& =\sup _{\tilde{v} \in \mathbb{R}^{n}}\langle\tilde{u}, \tilde{v}\rangle-\sup _{w \in \Delta}\left\langle(T D)^{-1}\left(w-t^{n+1}\right), \tilde{v}\right\rangle-\rho(w) .
\end{align*}
$$

In the last step the substitution $w=t^{n+1}+T D \alpha \Leftrightarrow \alpha=(T D)^{-1}\left(w-t^{n+1}\right)$ was performed. This can be further simplified to

$$
\begin{align*}
\ldots & =\sup _{\tilde{v} \in \mathbb{R}^{n}}\langle\tilde{u}, \tilde{v}\rangle+\left\langle(T D)^{-1} t^{n+1}, \tilde{v}\right\rangle-\left(\rho+\delta_{\Delta}\right)^{*}\left((T D)^{-T} \tilde{v}\right) \\
& =\sup _{\tilde{v} \in \mathbb{R}^{n}}\left\langle\tilde{u}+(T D)^{-1} t^{n+1}, \tilde{v}\right\rangle-\left(\rho+\delta_{\Delta}\right)^{*}\left((T D)^{-T} \tilde{v}\right) \tag{22}\\
& =\sup _{\tilde{v} \in \mathbb{R}^{n}}\left\langle T D \tilde{u}+t^{n+1},(T D)^{-T} \tilde{v}\right\rangle-\left(\rho+\delta_{\Delta}\right)^{*}\left((T D)^{-T} \tilde{v}\right) .
\end{align*}
$$

Since $T D$ is invertible we can perform another substitution $v^{\prime}=(T D)^{-T} \tilde{v}$.

$$
\begin{align*}
\ldots & =\sup _{v^{\prime} \in \mathbb{R}^{n}}\left\langle T D \tilde{u}+t^{n+1}, v^{\prime}\right\rangle-\left(\rho+\delta_{\Delta}\right)^{*}\left(v^{\prime}\right) \tag{23}\\
& =\left(\rho+\delta_{\Delta}\right)^{* *}\left(t^{n+1}+T D \tilde{u}\right)
\end{align*}
$$

The lifted regularizer is given as:

$$
\begin{equation*}
\boldsymbol{R}(\boldsymbol{u})=\sup _{\boldsymbol{q}: \Omega \rightarrow \mathbb{R}^{d \times n+1}} \int_{\Omega}\langle\boldsymbol{u}, \operatorname{Div} \boldsymbol{q}\rangle-\Psi^{*}(\boldsymbol{q}) \mathrm{d} x \tag{24}
\end{equation*}
$$

Using the parametrization by \tilde{u}, this can be equivalently written as

$$
\begin{equation*}
\sup _{\boldsymbol{q}(x) \in \mathcal{K}} \int_{\Omega} \sum_{j=1}^{n} \tilde{u}_{j} \operatorname{Div}\left(\boldsymbol{q}_{j}-\boldsymbol{q}_{n+1}\right)+\operatorname{Div} \boldsymbol{q}_{n+1} \mathrm{~d} x \tag{25}
\end{equation*}
$$

where the set $\mathcal{K} \subset \mathbb{R}^{d \times n+1}$ can be written as

$$
\begin{equation*}
\mathcal{K}=\left\{\boldsymbol{q} \in \mathbb{R}^{d \times n+1} \mid\left\|D^{\top} \boldsymbol{q}^{\top}(T D)^{-1}\right\|_{S^{\infty}} \leq 1\right\} \tag{26}
\end{equation*}
$$

Note that since $\boldsymbol{q}_{n+1} \in C_{c}^{\infty}\left(\Omega, \mathbb{R}^{d}\right)$, the last term $\operatorname{Div} \boldsymbol{q}_{n+1}$ in (25) vanishes by partial integration. With the substituion $\tilde{q}(x)=D^{\top} \boldsymbol{q}(x)^{\top}$ we have

$$
\begin{equation*}
\sup _{\tilde{q} \in \tilde{\mathcal{K}}} \int_{\Omega}\langle\tilde{u}, \operatorname{Div} \tilde{q}\rangle \mathrm{d} x \tag{27}
\end{equation*}
$$

with set $\tilde{\mathcal{K}} \subset \mathbb{R}^{d \times n}$:

$$
\begin{equation*}
\tilde{\mathcal{K}}=\left\{q \in \mathbb{R}^{d \times n} \mid\left\|q(T D)^{-1}\right\|_{S^{\infty}} \leq 1\right\} \tag{28}
\end{equation*}
$$

Note that since $\boldsymbol{q}_{i} \in C_{c}^{\infty}\left(\Omega, \mathbb{R}^{d}\right)$, the same holds for the linearly transformed \tilde{q}. With another substituion $q^{\prime}(x)=\tilde{q}(x)(T D)^{-1}$ we have

$$
\begin{align*}
\cdots & =\sup _{q^{\prime} \in \mathcal{K}^{\prime}} \int_{\Omega}\left\langle\tilde{u}, \operatorname{Div} q^{\prime} T D\right\rangle \mathrm{d} x \\
& =\sup _{q^{\prime} \in \mathcal{K}^{\prime}} \int_{\Omega}\left\langle T D \tilde{u}, \operatorname{Div} q^{\prime}\right\rangle \mathrm{d} x \tag{29}
\end{align*}
$$

Fig. 2: Joint estimation of mean and variance. Our formulation can optimize difficult nonconvex joint optimization problems with continuous label spaces.
where the set $\mathcal{K}^{\prime} \subset \mathbb{R}^{d \times n+1}$ is given as

$$
\begin{equation*}
\mathcal{K}^{\prime}=\left\{q \in \mathbb{R}^{d \times n} \mid\|q\|_{S^{\infty}} \leq 1\right\} \tag{30}
\end{equation*}
$$

which is the usual unlifted definition of the total variation $T V\left(t^{n+1}+T D \tilde{u}\right)$.
This shows that the lifting method solves

$$
\begin{equation*}
\min _{\tilde{u}: \Omega \rightarrow \Delta_{e}} \int_{\Omega}\left(\rho(x, \cdot)+\delta_{\Delta}\right)^{* *}\left(t^{n+1}+T D \tilde{u}(x)\right) \mathrm{d} x+\lambda T V\left(t^{n+1}+T D \tilde{u}\right) \tag{31}
\end{equation*}
$$

which is equivalent to the original problem but with a convexified data term.

2 Additional Experiment: Adaptive Denoising

In this experiment we jointly estimate the mean μ and variance σ of an image $I: \Omega \rightarrow \mathbb{R}$ according to a Gaussian model. The label space is chosen as $\Gamma=$ $[0,255] \times[1,10]$ and the dataterm as proposed in [1]:

$$
\begin{equation*}
\rho(x, \mu(x), \sigma(x))=\frac{(\mu(x)-I(x))^{2}}{2 \sigma(x)^{2}}+\frac{1}{2} \log \left(2 \pi \sigma(x)^{2}\right) \tag{32}
\end{equation*}
$$

As the projection onto the epigraph of $\left(\rho+\delta_{\Delta}\right)^{*}$ seems difficult to compute, we approximate ρ by a piecewise linear function using 29×29 sublabels and convexify it using the quickhull algorithm [2]. In Fig. 2 we show the result of minimizing (32) with total variation regularization.

References

1. Goldluecke, B., Strekalovskiy, E., Cremers, D.: Tight convex relaxations for vectorvalued labeling. SIAM Journal on Imaging Sciences 6(3) (2013) 1626-1664
2. Barber, C.B., Dobkin, D.P., Huhdanpaa, H.: The quickhull algorithm for convex hulls. ACM Transactions on Mathematical Software (TOMS) 22(4) (1996) 469-483

[^0]: * These authors contributed equally.

