Computer Vision Group

Visual Navigation for Flying Robots

Lecture Notes

Summer Term 2012

Lecturer: Dr. Jürgen Sturm

Teaching Assistant: Nikolas Engelhard
http://vision.in.tum.de/teaching/ss2012/visnav2012

Acknowledgements

This slide set would not have been possible without the help and support of many other people. In particular, I would like to thank all my great colleagues who made their lecture slides available for everybody on the internet or sent them to me personally.

My thanks go to (in alphabetical order)

- Alexander Kleiner
- Andrew Davison
- Andrew Zisserman
- Antonio Torralba
- Chad Jenkins
- Cyrill Stachniss
- Daniel Cremers
- Georgio Grisetti
- Jan Peters
- Jana Kosecka
- Jörg Müller
- Jürgen Hess
- Kai Arras
- Kai Wurm
- Kurt Konolige
- Li Fei-Fei
- Maxim Likhachev
- Margaritha Chli
- Nicholas Roy
- Paul Newman
- Richard Newcombe
- Richard Szeliski
- Roland Siegwart
- Sebastian Thrun
- Steve Seitz
- Steven Lavalle
- Szymon Rusinkiewicz
- Volker Grabe
- Vijay Kumar
- Wolfram Burgard

Table of Contents

Introduction 1
3D Geometry and Sensors 17
Probabilistic Models and State Estimation 37
Robot Control 55
Visual Motion Estimation 69
Simultaneous Localization and Mapping (SLAM) 85
Bundle Adjustment and Stereo Correspondence 101
Place Recognition, ICP, and Dense Reconstruction 117
Motion Planning 133
Planning under Uncertainty, Exploration and Coordination 149
Experimentation, Evaluation and Benchmarking 165

Visual Navigation for Flying Robots

Organization

- Tue 10:15-11:45
- Lectures, discussions
- Lecturer: Jürgen Sturm
- Thu 14:15-15:45
- Lab course, homework \& programming exercises
- Teaching assistant: Nikolas Engelhard
- Course website
- Dates, additional material
- Exercises, deadlines
- http://cvpr.in.tum.de/teaching/ss2012/visnav2012

Who are we?

- Computer Vision group:

1 Professor, 2 Postdocs, 7 PhD students

- Research topics:

Optical flow and motion estimation, 3D reconstruction, image segmentation, convex optimization

- My research goal:

Apply solutions from computer vision to realworld problems in robotics.

Goal of this Course

- Provide an overview on problems/approaches for autonomous quadrocopters
- Strong focus on vision as the main sensor
- Areas covered: Mobile Robotics and Computer Vision
- Hands-on experience in lab course

Course Material

- Probabilistic Robotics. Sebastian Thrun, Wolfram Burgard and Dieter Fox. MIT Press, 2005.
- Computer Vision: Algorithms and Applications. Richard Szeliski. Springer, 2010.
http://szeliski.org/Book/

Lecture Plan

1. Introduction
2. Robots, sensor and motion models
3. State estimation and control
4. Guest talks
5. Feature detection and matching
6. Motion estimation
7. Simultaneous localization and mapping
8. Stereo correspondence
9. 3D reconstruction
10. Navigation and path planning
11. Exploration
12. Evaluation and Benchmarking

Basics on mobile robotics

Camera-based localization and mapping

Lab Course

- Thu 14:15-15:45, given by Nikolas Engelhard
- Exercises: room 02.09.23 ($6 x$, obliged, homework discussion)
- Robot lab: room 02.09.34/36 (in weeks without exercises, in case you need help, recommended!)

Group Assignment and Schedule

- 3 Ardrones (red/green/blue) + Joystick + $2 x$ Batteries + Charger + PC
- 20 students in the course, 2-3 students per group $\rightarrow 7-8$ groups
- Either use lab computers or bring own laptop (recommended)
- Will put up lists for groups and robot schedule in robot lab (room 02.09.36)

VISNAV2012: Robot Schedule

- Each team gets one time slot with programming support
- The robots/PCs are also available during the rest of the week (but without programming support)

	Red	Green	Blue
Thu 2pm-3pm			
Thu 3pm-4pm			
Thu 4pm-5pm			

Exercises Plan

- Exercise sheets contain both theoretical and programming problems
- 3 exercise sheets +1 mini-project
- Deadline: before lecture (Tue 10:15)
- Hand in by email (visnav2012@cvpr.in.tum.de)

VISNAV2012: Team Assignment

Team Name				
Student Name				
Student Name				
Student Name				

Team Name				
Student Name				
Student Name				
Student Name				

- Quadrocopters are dangerous objects
- Read the manual carefully before you start
- Always use the protective hull
- If somebody gets injured, report to us so that we can improve safety guidelines
- If something gets damaged, report it to us so that we can fix it
- NEVER TOUCH THE PROPELLORS
- DO NOT TRY TO CATCH THE QUADROCOPTER WHEN IT FAILS - LET IT FALL/CRASH!

Agenda for Today - History of mobile robotics - Brief intro on quadrocopters - Paradigms in robotics - Architectures and middleware	General background - Autonomous, automaton - self-willed (Greek, auto+matos) - Robot - Karel Capek in 1923 play R.U.R. (Rossum’s Universal Robots) - labor (Czech or Polish, robota) - workman (Czech or Polish, robotnik)
History In 1966, Marvin Minsky at MIT asked his undergraduate student Gerald Jay Sussman to "spend the summer linking a camera to a computer and getting the computer to describe what it saw". We now know that the problem is slightly more difficult than that. (Szeliski 2009, Computer Vision)	Shakey the Robot (1966-1972)
Shakey the Robot (1966-1972)	

Rhino and Minerva (1998-99) - Museum tour guide robots - University of Bonn and CMU - Deutsches Museum, Smithsonian Museum	Roomba (2002) - Sensor: one contact sensor - Control: random movements - Over 5 million units sold
Neato XV-11 (2010) - Sensors: - 1D range sensor for mapping and localization - Improved coverage	Darpa Grand Challenge (2005)
Kiva Robotics (2007) - Pick, pack and ship automation	Fork Lift Robots (2010) Operation In Beverage Plant

Quadrocopters (2001-)	Aggressive Maneuvers (2010)
Autonomous Construction (2011)	Mapping with a Quadrocopter (2011)
Our Own Recent Work (2011-) - RGB-D SLAM (Nikolas Engelhard) - Visual odometry (Frank Steinbrücker) - Camera-based navigation (Jakob Engel)	Current Trends in Robotics Robots are entering novel domains - Industrial automation - Domestic service robots - Medical, surgery - Entertainment, toys - Autonomous cars - Aerial monitoring/inspection/construction

Flying Robots

- Recently increased interest in flying robots
- Shift focus to different problems (control is much more difficult for flying robots, path planning is simpler, ...)
- Especially quadrocopters because
- Can keep position
- Reliable and compact
- Low maintenance costs
- Trend towards miniaturization

Application Domains of Flying Robots

- Stunts for action movies, photography, sportscasts
- Search and rescue missions
- Aerial photogrammetry
- Documentation
- Aerial inspection of bridges, buildings, ...
- Construction tasks
- Military
- Today, quadrocopters are often still controlled by human pilots

Flying Principles

- Fixed-wing airplanes
- generate lift through forward airspeed and the shape of the wings
- controlled by flaps
- Helicopters/rotorcrafts
- main rotor for lift, tail rotor to compensate for torque
- controlled by adjusting rotor pitch
- Quadrocopter/quadrotor
- four rotors generate lift
- controlled by changing the speeds of rotation

Quadrocopter

Keep position:

- Torques of all four rotors sum to zero
- Thrust compensates for earth gravity
Quadrocopter: Basic Motions
Quadrocopter: Basic Motions
- Low level control (not covered in this course)
- Maintain attitude, stabilize
- Compensate for disturbances
- Compensate for drift
- Avoid obstacles
- Localization and Mapping
- Navigate to point
- Return to take-off position
- Person following

Robot Ethics

- Where does the responsibility for a robot lie?
- How are robots motivated?
- Where are humans in the control loop?
- How might society change with robotics?
- Should robots be programmed to follow a code of ethics, if this is even possible?

Robot Ethics

Three Laws of Robotics (Asimov, 1942):

- A robot may not injure a human being or, through inaction, allow a human being to come to harm.
- A robot must obey the orders given to it by human beings, except where such orders would conflict with the First Law.
- A robot must protect its own existence as long as such protection does not conflict with the First or Second Laws.

Robot Hardware/Components

- Sensors
- Actuators
- Control Unit/Software

How would you tackle this?

- What hardware would you choose?
- What software architecture would you choose?

Evolution of Paradigms in Robotics

- Classical robotics (mid-70s)
- Exact models
- No sensing necessary
- Reactive paradigms (mid-80s)
- No models
- Relies heavily on good sensing
- Hybrid approaches (since 90s)
- Model-based at higher levels
- Reactive at lower levels

Classical / hierarchical paradigm

- Inspired by methods from Artificial Intelligence (70's)
- Focus on automated reasoning and knowledge representation
- STRIPS (Stanford Research Institute Problem Solver): Perfect world model, closed world assumption
- Shakey: Find boxes and move them to designated positions

Classical paradigm: Stanford Cart

- Take nine images of the environment, identify interesting points, estimate depth
- Integrate information into global world model
- Correlate images with previous image set to estimate robot motion
- On basis of desired motion, estimated motion, and current estimate of environment, determine direction in which to move
- Execute motion

Classical paradigm as horizontal/functional decomposition

Characteristics of hierarchical paradigm

Good old-fashioned Artificial Intelligence (GOFAI):

- Symbolic approaches
- Robot perceives the world, plans the next action, acts
- All data is inserted into a single, global world model
- Sequential data processing

Reactive Paradigm as
Vertical Decomposition

Reactive Paradigm

- Sense-act type of organization
- Multiple instances of stimulus-response loops (called behaviors)
- Each behavior uses local sensing to generate the next action
- Combine several behaviors to solve complex tasks
- Run behaviors in parallel, behavior can override (subsume) output of other behaviors

Characteristics of Reactive Paradigm

- Situated agent, robot is integral part of the world
- No memory, controlled by what is happening in the world
- Tight coupling between perception and action via behaviors
- Only local, behavior-specific sensing is permitted (ego-centric representation)

Subsumption Architecture - Introduced by Rodney Brooks in 1986 - Behaviors are networks of sensing and acting modules (augmented finite state machines) - Modules are grouped into layers of competence - Layers can subsume lower layers	Level 1: Avoid
Level 2: Wander	Level 3: Follow Corridor
Roomba Robot - Exercise: Model the behavior of a Roomba robot.	Navigation with Potential Fields - Treat robot as a particle under the influence of a potential field - Robot travels along the derivative of the potential - Field depends on obstacles, desired travel directions and targets - Resulting field (vector) is given by the summation of primitive fields - Strength of field may change with distance to obstacle/target

Primitive Potential Fields $\uparrow \uparrow \uparrow \uparrow$ $\uparrow \uparrow \uparrow \uparrow$ Uniform Perpendicular Attractive Repulsive Tangential	Example: reach goal and avoid obstacles
Corridor Following Robot - Level 1 (collision avoidance) add repulsive fields for the detected obstacles - Level 2 (wander) add a uniform field into a (random) direction - Level 3 (corridor following) replaces the wander field by three fields (two perpendicular, one parallel to the walls)	Characteristics of Potential Fields - Simple method which is often used - Easy to visualize - Easy to combine different fields (with parameter tuning) - But: Suffer from local minima - Random motion to escape local minimum - Backtracking - Increase potential of visited regions - High-level planner
Hybrid deliberative/reactive Paradigm - Combines advantages of previous paradigms - World model used in high-level planning - Closed-loop, reactive low-level control	Modern Robot Architectures - Robots became rather complex systems - Often, a large set of individual capabilities is needed - Flexible composition of different capabilities for different tasks

Best Practices for Robot Architectures - Modular - Robust - De-centralized - Facilitate software re-use - Hardware and software abstraction - Provide introspection - Data logging and playback - Easy to learn and to extend	Robotic Middleware - Provides infrastructure - Communication between modules - Data logging facilities - Tools for visualization - Several systems available - Open-source: ROS (Robot Operating System), Player/Stage, CARMEN, YARP, OROCOS - Closed-source: Microsoft Robotics Studio
Example Architecture for Navigation	Stanley's Software Architecture
PR2 Software Architecture - Two 7-DOF arms, grippers, torso, 2-DOF head - 7 cameras, 2 laser scanners - Two 8-core CPUs, 3 network switches - 73 nodes, 328 message topics, 174 services	Communication Paradigms - Message-based communication - Direct (shared) memory access

Forms of Communication

- Push
- Pull
- Publisher/subscriber
- Publish to blackboard
- Remote procedure calls / service calls
- Preemptive tasks / actions

Pull

- Data is delivered upon request by the consumer C (e.g., a map of the building)
- Useful if the consumer C controls the process and the data is not required (or available) at high frequency

Publish to Blackboard

- The producer P sends data to the blackboard (e.g., parameter server)
- A consumer C pull data from the blackboard B
- Only the last instance of data is stored in the blackboard B

Push

- Broadcast
- One-way communication
- Send as the information is generated by the producer P

Publisher/Subscriber

- The consumer C requests a subscription for the data by the producer P (e.g., a camera or GPS)
- The producer P sends the subscribed data as it is generated to C
- Data generated according to a trigger (e.g., sensor data, computations, other messages, ...)

Service Calls

- The client C sends a request to the server S
- The server returns the result
- The client waits for the result (synchronous communication)
- Also called: Remote Procedure Call

Actions (Preemptive Tasks)

- The client requests the execution of an enduring action (e.g., navigate to a goal location)
- The server executes this action and sends continuously status updates
- Task execution may be canceled from both sides (e.g., timeout, new navigation goal,...)

Robot Operating System (ROS)

- We will use ROS in the lab course
- http://www.ros.org/
- Installation instructions, tutorials, docs

Software Management

- Package: atomic unit of building, contains one or more nodes and/or message definitions
- Stack: atomic unit of releasing, contains several packages with a common theme
- Repository: contains several stacks, typically one repository per institution
- Nodes: programs that communicate with each other
- Messages: data structure (e.g., "Image")
- Topics: typed message channels to which nodes can publish/subscribe (e.g., "/camera1/image_color")
- Parameters: stored in a blackboard

Tutorials in ROS

Exercise Sheet 1

- On the course website
- Solutions are due in 2 weeks (May $1^{\text {st }}$)
- Theory part:

Define the motion model of a quadrocopter (will be covered next week)

- Practical part:

Playback a bag file with data from quadrocopter \& plot trajectory

Questions?

- See you next week!

Summary

- History of mobile robotics
- Brief intro on quadrocopters
- Paradigms in robotics
- Architectures and middleware

	Or
Visual Navigation for Flying Robots 3D Geometry and Sensors Dr. Jürgen Sturm	- Student request to change lecture time to Tuesday afternoon due to time conflicts with other course - Problem: At least 3 students who are enrolled for this lecture have time Tuesday morning but not on Tuesday afternoon - Therefore: No change - Lectures are important, please choose which course to follow - Note: Still students on the waiting list
Organization: Lab Course - Robot lab: room 02.09.38 (around the corner) - Exercises: room 02.09.23 (here) - You have to sign up for a team before May $1^{\text {st }}$ (team list in student lab) - After May $1^{\text {st }}$, remaining places will be given to students on waiting list - This Thursday: Visual navigation demo at 2 pm in the student lab (in conjunction with TUM Girls' Day)	Today's Agenda - Linear algebra - 2D and 3D geometry - Sensors
Vectors - Vector and its coordinates $\mathbf{x}=\left(\begin{array}{c} x_{1} \\ x_{2} \\ \vdots \\ x_{n} \end{array}\right) \in \mathbb{R}^{n}$ - Vectors represent points in an n-dimensional space	Vector Operations - Scalar multiplication - Addition/subtraction - Length - Normalized vector - Dot product - Cross product

Vector Operations - Scalar multiplication - Addition/subtraction - Length - Normalized vector - Dot product - Cross product	Vector Operations - Scalar multiplication - Addition/subtraction - Length - Normalized vector - Dot product - Cross product $\\|x\\|_{2}=\\|x\\|=\sqrt{x_{1}^{2}+x_{2}^{2}+\ldots}$
Vector Operations - Scalar multiplication - Addition/subtraction - Length - Normalized vector - Dot product - Cross product $\hat{\mathrm{x}}=\frac{\mathrm{x}}{\\|\mathrm{x}\\|}$	Vector Operations - Scalar multiplication - Addition/subtraction - Length - Normalized vector - Dot product - Cross product x, y are orthogonal if $\mathrm{x} \cdot \mathrm{y}=0$ \mathbf{y} is linearly dependent from $\left\{\mathbf{x}_{1}, \mathbf{x}_{2}, \ldots\right\}$ if $\mathbf{y}=\sum_{i} k_{i} \mathbf{x}_{i}$
Vector Operations - Scalar multiplication - Addition/subtraction - Length - Normalized vector - Dot product - Cross product $\mathbf{x} \times \mathbf{y}=\\|\mathbf{x}\\|\\|\mathbf{y}\\| \sin (\theta) \mathbf{n}$	Cross Product - Definition $\mathbf{x} \times \mathbf{y}=\left(\begin{array}{l} x_{2} y_{3}-x_{3} y_{2} \\ x_{3} y_{1}-x_{1} y_{3} \\ x_{1} y_{2}-x_{2} y_{1} \end{array}\right)$ - Matrix notation for the cross product $[\mathbf{x}]_{\times}=\left(\begin{array}{ccc} 0 & -x_{3} & x_{2} \\ x_{3} & 0 & -x_{1} \\ -x_{2} & x_{1} & 0 \end{array}\right)$ - Verify that $\mathrm{x} \times \mathrm{y}=[\mathrm{x}]_{\times} \mathrm{y}$

Matrices

- Rectangular array of numbers

$$
X=\left(\begin{array}{cccc}
x_{11} & x_{12} & \ldots & x_{1 m} \\
x_{21} & x_{22} & \ldots & x_{2 m} \\
\vdots & & & \\
x_{n 1} & x_{n 2} & \ldots & x_{n m}
\end{array}\right) \quad \begin{array}{|c}
\downarrow \\
\downarrow
\end{array}
$$

- First index refers to row
- Second index refers to column

Matrices

- Row vectors of a matrix

Matrices

- Square matrix
- Diagonal matrix
- Upper and lower triangular matrix
- Symmetric matrix $\quad X=X^{\top}$
- Skew-symmetric matrix $\quad X=-X^{\top}\left(=\left(\begin{array}{ccc}0 & -\omega_{3} & \omega_{2} \\ \omega_{3} & 0 & -\omega_{1} \\ -\omega_{2} & \omega_{1} & 0\end{array}\right)\right.$,
- (Semi-)positive definite matrix
- Invertible matrix $\quad \mathbf{a}^{\top} X \mathbf{a} \geq 0$
- Orthonormal matrix
- Matrix rank

Matrices

- Column vectors of a matrix

- Geometric interpretation: for example, column vectors can form basis of a coordinate system

Matrices

- Square matrix
- Diagonal matrix
- Upper and lower triangular matrix
- Symmetric matrix
- Skew-symmetric matrix
- (Semi-)positive definite matrix
- Invertible matrix
- Orthonormal matrix
- Matrix rank

Matrix Operations

- Scalar multiplication
- Addition/subtraction
- Transposition
- Matrix-vector multiplication
- Matrix-matrix multiplication
- Inversion

Matrix Operations

- Scalar multiplication
- Addition/subtraction
- Transposition
- Matrix-vector multiplication Xb
- Matrix-matrix multiplication
- Inversion

Matrix-Vector Multiplication

- Definition

$$
X \cdot \mathbf{b}=\left(\begin{array}{cccc}
x_{11} & x_{12} & \ldots & x_{1 m} \\
x_{21} & x_{22} & \ldots & x_{2 m} \\
\vdots & & & \\
x_{n 1} & x_{n 2} & \ldots & x_{n m}
\end{array}\right)\left(\begin{array}{c}
b_{1} \\
b_{2} \\
\vdots \\
b_{m}
\end{array}\right)=\sum_{k=1}^{n} \uparrow \begin{gathered}
n \\
\text { column vectors }
\end{gathered}
$$

- Geometric interpretation: a linear combination of the columns of X scaled by the coefficients of \mathbf{b}

Matrix Operations

- Scalar multiplication
- Addition/subtraction
- Transposition
- Matrix-vector multiplication
- Matrix-matrix multiplication
- Inversion
- Geometric interpretation:

A linear combination of the columns of A scaled by the coefficients of \mathbf{b}
\rightarrow coordinate transformation

Matrix-Matrix Multiplication

- Operator $\quad \mathbb{R}^{n \times m} \times \mathbb{R}^{m \times p} \rightarrow \mathbb{R}^{n \times p}$
- Definition

$$
\begin{aligned}
C & =A B \\
& =A\left(\begin{array}{llll}
\mathbf{b}_{* 1} & \mathbf{b}_{* 2} & \cdots \mathbf{b}_{* p}
\end{array}\right)
\end{aligned}
$$

- Interpretation: transformation of coordinate systems
- Can be used to concatenate transforms

Matrix-Matrix Multiplication

- Not commutative (in general)

$$
A B \neq B A
$$

- Associative

$$
A(B C)=(A B) C
$$

- Transpose

$$
(A B)^{\top}=B^{\top} A^{\top}
$$

Matrix Operations

- Scalar multiplication
- Addition/subtraction
- Transposition
- Matrix-vector multiplication
- Matrix-matrix multiplication
- Inversion

Matrix Inversion

- If A is a square matrix of full rank, then there is a unique matrix $B=A^{\top}$ such that $A B=I$.
- Different ways to compute, e.g., Gauss-Jordan elimination, LU decomposition, ...
- When A is orthonormal, then

$$
A^{-1}=A^{\top}
$$

Geometric Primitives in 2D

- Matrices
- Operators
- Now let's apply these concepts to 2D+3D geometry

Recap: Linear Algebra

- Vectors
\qquad
- 2D point

$$
\mathbf{x}=\binom{x}{y} \in \mathbb{R}^{2}
$$

- Augmented vector

$$
\overline{\mathbf{x}}=\left(\begin{array}{l}
x \\
y \\
1
\end{array}\right) \in \mathbb{R}^{3}
$$

- Homogeneous coordinates $\tilde{\mathbf{x}}=\left(\begin{array}{c}\tilde{x} \\ \tilde{y} \\ \tilde{w}\end{array}\right) \in \mathbb{P}^{2}$

Geometric Primitives in 2D

- 2D line

$$
\tilde{\mathbf{1}}=(a, b, c)^{\top}
$$

- 2D line equation

$$
\overline{\mathrm{x}} \cdot \tilde{\mathbf{l}}=a x+b y+c=0
$$

Geometric Primitives in 2D

- Normalized line equation vector

$$
\tilde{\mathbf{1}}=\left(\hat{n}_{x}, \hat{n}_{y}, d\right)^{\top}=(\hat{\mathbf{n}}, d)^{\top} \quad \text { with } \quad\|\hat{\mathbf{n}}\|=1
$$

where d is the distance of the line to the origin

Geometric Primitives in 3D

- 3D plane
$\tilde{\mathbf{m}}=(a, b, c, d)^{\top}$
- 3D plane equation $\overline{\mathbf{x}} \cdot \tilde{\mathbf{m}}=a x+b y+c z+d=0$
- Normalized plane with unit normal vector $\mathbf{m}=\left(\hat{n}_{x}, \hat{n}_{y}, \hat{n}_{z}, d\right)^{\top}=(\hat{\mathbf{n}}, d)$ ($\|\hat{\mathbf{n}}\|=1$) and distance d

Geometric Primitives in 2D

- Polar coordinates of a line: $(\theta, d)^{\top}$
(e.g., used in Hough transform for finding lines)

$$
\hat{\mathbf{n}}=(\cos \theta, \sin \theta)^{\top}
$$

Geometric Primitives in 3D

$\begin{aligned} & \text { - 3D point } \\ & \text { (same as before) }\end{aligned} \quad \mathbf{x}=\left(\begin{array}{l}x \\ y \\ z\end{array}\right) \in \mathbb{R}^{3}$

- Augmented vector
$\overline{\mathrm{x}}=\left(\begin{array}{l}x \\ y \\ z \\ 1\end{array}\right) \in \mathbb{R}^{4}$
- Homogeneous coordinates $\tilde{\mathbf{x}}=\left(\begin{array}{c}\tilde{x} \\ \tilde{y} \\ \tilde{z} \\ \tilde{w}\end{array}\right) \in \mathbb{P}^{3}$

Geometric Primitives in 3D

- 3D line $\mathbf{r}=(1-\lambda) \mathbf{p}+\lambda \mathbf{q}$ through points \mathbf{p}, \mathbf{q}
- Infinite line:

$$
\lambda \in \mathbb{R}
$$

- Line segment joining p, q :

$$
0 \leq \lambda \leq 1
$$

2D Planar Transformations	2D Transformations - Translation $\begin{aligned} & \mathbf{x}^{\prime}=\mathbf{x}+t \\ & \mathbf{x}^{\prime}=\underbrace{\left(\begin{array}{ll} \mathbf{I} & \mathbf{t} \end{array}\right) \overline{\mathbf{x}}}_{2 \times 3} \\ & \overline{\mathbf{x}}^{\prime}=\underbrace{\left(\begin{array}{cc} \mathbf{I} & \mathbf{t} \\ \mathbf{0}^{\top} & 1 \end{array}\right)}_{3 \times 3} \overline{\mathbf{x}} \end{aligned}$ where I is the identity matrix (2×2) and 0 is the zero vector
2D Transformations - Rotation + translation (2D rigid body motion, or 2D Euclidean transformation) $\mathbf{x}^{\prime}=\mathbf{R} \mathbf{x}+t \quad \text { or } \quad \overline{\mathbf{x}}^{\prime}=\left(\begin{array}{cc} \mathbf{R} & \mathbf{t} \\ \mathbf{0}^{\top} & 1 \end{array}\right) \overline{\mathbf{x}}$ where $\mathbf{R}=\left(\begin{array}{cc}\cos \theta & -\sin \theta \\ \sin \theta & \cos \theta\end{array}\right)$ is an orthonormal rotation matrix, i.e., $\mathbf{R R}^{\top}=\mathbf{I}$ - Distances (and angles) are preserved	2D Transformations - Scaled rotation/similarity transform $\mathbf{x}^{\prime}=s \mathbf{R} \mathbf{x}+t \quad \text { or } \quad \overline{\mathbf{x}}^{\prime}=\left(\begin{array}{cc} s \mathbf{R} & \mathbf{t} \\ \mathbf{0}^{\top} & 1 \end{array}\right) \overline{\mathbf{x}}$ - Preserves angles between lines
2D Transformations - Affine transform $\overline{\mathbf{x}}^{\prime}=A \overline{\mathbf{x}}=\left(\begin{array}{ccc} a_{11} & a_{12} & a_{13} \\ a_{21} & a_{22} & a_{23} \\ 0 & 0 & 1 \end{array}\right) \overline{\mathbf{x}}$ - Parallel lines remain parallel	2D Transformations - Projective/perspective transform $\tilde{\mathbf{x}}^{\prime}=\tilde{H}=\left(\begin{array}{lll} a_{11} & a_{12} & a_{13} \\ a_{21} & a_{22} & a_{23} \\ a_{31} & a_{32} & a_{33} \end{array}\right) \tilde{\mathbf{x}}$ - Note that \tilde{H} is homogeneous (only defined up to scale) - Resulting coordinates are homogeneous - Parallel lines remain parallel

Euler Angles

- Yaw Ψ, Pitch Θ, Roll Φ to rotation matrix $R=R_{Z}(\Psi) R_{Y}(\Theta) R_{X}(\Phi)$

$$
\begin{aligned}
& =\left(\begin{array}{ccc}
1 & 0 & 0 \\
0 & \cos \Phi & \sin \Phi \\
0 & -\sin \Phi & \cos \Phi
\end{array}\right)\left(\begin{array}{ccc}
\cos \Theta & 0 & -\sin \Theta \\
0 & 1 & 0 \\
\sin \Theta & 0 & \cos \Theta
\end{array}\right)\left(\begin{array}{ccc}
\cos \Psi & \sin \Psi & 0 \\
-\sin \Psi & \cos \Psi & 0 \\
0 & 0 & 1
\end{array}\right) \\
& =\left(\begin{array}{ccc}
\cos \Theta \cos \Psi & \cos \Theta \sin \Psi & -\sin \Theta \\
\sin \Phi \sin \Theta \cos \Psi-\cos \Phi \sin \Psi & \sin \Phi \sin \Theta \sin \Psi+\cos \Phi \cos \Psi & \sin \Phi \cos \Theta \\
\cos \Phi \sin \Theta \cos \Psi+\sin \Phi \sin \Psi & \cos \Phi \sin \Theta \sin \Psi-\sin \Phi \cos \Psi & \cos \Phi \cos \Theta
\end{array}\right)
\end{aligned}
$$

- Rotation matrix to Yaw-Pitch-Roll

$$
\begin{aligned}
\phi & =\operatorname{Atan} 2\left(-r_{31}, \sqrt{r_{11}^{2}+r_{21}^{2}}\right) \\
\psi & =-\operatorname{Atan} 2\left(\frac{r_{21}}{\cos (\phi)}, \frac{r_{11}}{\cos (\phi)}\right) \\
\theta & =\operatorname{Atan} 2\left(\frac{r_{32}}{\cos (\phi)}, \frac{r_{33}}{\cos (\phi)}\right)
\end{aligned}
$$

Gimbal Lock

- When the axes align, one degree-of-freedom (DOF) is lost...

Euler Angles

- Advantage:
- Minimal representation (3 parameters)
- Easy interpretation
- Disadvantages:
- Many "alternative" Euler representations exist (XYZ, ZXZ, ZYX, ...)
- Singularities (gimbal lock)

Axis/Angle

- Represent rotation by
- rotation axis $\hat{\mathbf{n}}$ and
- rotation angle θ
- 4 parameters ($\hat{\mathbf{n}}, \theta$)

- 3 parameters $\boldsymbol{\omega}=\theta \hat{\mathbf{n}}$
- length is rotation angle
- also called the angular velocity
- minimal but not unique (why?)

Derivation of Angular Velocities

\rightarrow Linear ordinary differential equation (ODE)

$$
\dot{R}(t)=[\boldsymbol{\omega}]_{\times} R(t)=\left(\begin{array}{ccc}
0 & -\omega_{3} & \omega_{2} \\
\omega_{3} & 0 & -\omega_{1} \\
-\omega_{2} & \omega_{1} & 0
\end{array}\right) R(t)
$$

- Solution of this ODE

$$
R(t)=\exp \left([\boldsymbol{\omega}]_{\times}\right) R(0)
$$

- Conversions

$$
R=\exp \left([\boldsymbol{\omega}]_{\times}\right) \quad[\boldsymbol{\omega}]_{\times}=\log R
$$

$$
[\boldsymbol{\omega}(t)]_{\times}=\dot{R}(t) R^{\top}(t)
$$

Derivation of Angular Velocities

\rightarrow Linear ordinary differential equation (ODE)

$$
\dot{R}(t)=[\boldsymbol{\omega}]_{\times} R(t)=\left(\begin{array}{ccc}
0 & -\omega_{3} & \omega_{2} \\
\omega_{3} & 0 & -\omega_{1} \\
-\omega_{2} & \omega_{1} & 0
\end{array}\right) R(t)
$$

- The space of all skew-symmetric matrices is called the tangent space

$$
\operatorname{so}(3)=\left\{[\boldsymbol{\omega}]_{\times} \in \mathbb{R}^{3 \times 3} \mid \boldsymbol{\omega} \in \mathbb{R}^{3}\right\}
$$

- Space of all rotations in 3D (Special orientation group)

$$
\mathrm{SO}(3)=\left\{R \in \mathbb{R}^{3 \times 3} \mid R^{\top} R=I, \operatorname{det} R=1\right\}
$$

Exponential Twist

- The exponential map can be generalized to Euclidean transformations (incl. translations)
- Tangent space $\operatorname{se}(3)=\operatorname{so}(3) \times \mathbb{R}^{3}$
- (Special) Euclidean group $\mathrm{SE}(3)=\mathrm{SO}(3) \times \mathbb{R}^{3}$ (group of all Euclidean transforms)
- Rigid body velocity

$$
\xi=(\underbrace{\omega_{x}, \omega_{y}, \omega_{z}}_{\text {angular vel. linear vel. }}, \underbrace{v_{x}, v_{y}, v_{z}}_{x}) \in \mathbb{R}^{6}
$$

Unit Quaternions

- Quaternion $\quad \mathbf{q}=\left(q_{x}, q_{y}, q_{z}, q_{w}\right)^{\top} \in \mathbb{R}^{4}$
- Unit quaternions have $\|\mathbf{q}\|=1$
- Opposite sign quaternions represent the same rotation $\mathbf{q}=-\mathbf{q}$
- Otherwise unique

Conversion

- Rodriguez' formula

$$
R(\hat{\mathbf{n}}, \theta)=I+\sin \theta[\hat{\mathbf{n}}]_{\times}+(1-\cos \theta)[\hat{\mathbf{n}}]_{\times}^{2}
$$

- Inverse

$$
\theta=\cos ^{-1}\left(\frac{\operatorname{trace}(R)-1}{2}\right), \hat{\mathbf{n}}=\frac{1}{2 \sin \theta}\left(\begin{array}{l}
r_{32}-r_{23} \\
r_{13}-r_{31} \\
r_{21}-r_{12}
\end{array}\right)
$$

see: An Invitation to 3D Vision, Y. Ma, S. Soatto, J. Kosecka, S. Sastry, Chapter 2 (available online)

- Convert to homogeneous coordinates

$$
\hat{\boldsymbol{\xi}}=\left(\begin{array}{cccc}
0 & -\omega_{z} & \omega_{y} & v_{x} \\
\omega_{z} & 0 & -\omega_{x} & v_{y} \\
-\omega_{y} & \omega_{x} & 0 & v_{z} \\
0 & 0 & 0 & 0
\end{array}\right) \in \operatorname{se}(3)
$$

- Exponential map between se(3) and SE(3)

$$
M=\exp \hat{\boldsymbol{\xi}} \quad \hat{\xi}=\log M
$$

- There are also direct formulas (similar to Rodriguez)

Unit Quaternions

- Advantage: multiplication and inversion operations are really fast
- Quaternion-Quaternion Multiplication

$$
\begin{aligned}
\mathbf{q}_{0} \mathbf{q}_{1} & =\left(\mathbf{v}_{0}, w_{0}\right)\left(\mathbf{v}_{1}, w_{1}\right) \\
& =\left(\mathbf{v}_{0} \times \mathbf{v}_{1}+w_{0} \mathbf{v}_{1}+w_{1} \mathbf{v}_{0}, w_{0} w_{1}-\mathbf{v}_{0} \mathbf{v}_{1}\right)
\end{aligned}
$$

- Inverse (flip sign of vor w)

$$
\begin{aligned}
\mathbf{q}_{0} / \mathbf{q}_{1} & =\left(\mathbf{v}_{0}, w_{0}\right) /\left(\mathbf{v}_{1}, w_{1}\right) \\
& =\left(\mathbf{v}_{0}, w_{0}\right)\left(\mathbf{v}_{1},-w_{1}\right) \\
& =\left(\mathbf{v}_{0} \times \mathbf{v}_{1}+w_{0} \mathbf{v}_{1}-w_{1} \mathbf{v}_{0},-w_{0} w_{1}-\mathbf{v}_{0} \mathbf{v}_{1}\right)
\end{aligned}
$$

Unit Quaternions

- Quaternion-Vector multiplication (rotate point p with rotation q)

$$
\mathrm{p}^{\prime}=\mathrm{v} \overline{\mathrm{p}} / \mathrm{q}
$$

with $\overline{\mathbf{p}}=(x, y, z, 0)^{\top}$

- Relation to Axis/Angle representation

$$
\mathbf{q}=(\mathbf{v}, w)=\left(\sin \frac{\theta}{2} \hat{\mathbf{n}}, \cos \frac{\theta}{2}\right)
$$

3D to 2D Projections

- Orthographic projections
- Perspective projections

Spherical Linear Interpolation (SLERP)

- Useful for interpolating between two rotations

$$
\text { procedure } \operatorname{slerp}\left(\boldsymbol{q}_{0}, \boldsymbol{q}_{1}, \alpha\right):
$$

1. $\boldsymbol{q}_{r}=\boldsymbol{q}_{1} / \boldsymbol{q}_{0}=\left(\boldsymbol{v}_{r}, w_{r}\right)$
2. if $w_{r}<0$ then $\boldsymbol{q}_{r} \leftarrow-\boldsymbol{q}_{r}$
3. $\theta_{r}=2 \tan ^{-1}\left(\left\|\boldsymbol{v}_{r}\right\| / w_{r}\right)$
4. $\hat{\boldsymbol{n}}_{r}=\mathcal{N}\left(\boldsymbol{v}_{r}\right)=\boldsymbol{v}_{r} /\left\|\boldsymbol{v}_{r}\right\|$
5. $\theta_{\alpha}=\alpha \theta_{r}$
6. $\boldsymbol{q}_{\alpha}=\left(\sin \frac{\theta_{\alpha}}{2} \hat{\boldsymbol{n}}_{r}, \cos \frac{\theta_{\alpha}}{2}\right)$

3D to 2D Perspective Projection

3D to 2D Perspective Projection

- 3D point p (in the camera frame)
- 2D point x (on the image plane)
- Pin-hole camera model

$$
\tilde{\mathbf{x}}=\left(\begin{array}{llll}
1 & 0 & 0 & 0 \\
0 & 1 & 0 & 0 \\
0 & 0 & 1 & 0
\end{array}\right) \tilde{\mathbf{p}}
$$

- Remember, $\tilde{\mathrm{x}}$ is homogeneous, need to normalize

$$
\tilde{\mathbf{x}}=\left(\begin{array}{c}
\tilde{x} \\
\tilde{y} \\
\tilde{z}
\end{array}\right) \quad \Rightarrow \quad \mathrm{x}=\binom{\tilde{x} / \tilde{z}}{\tilde{y} / \tilde{z}}
$$

Camera Intrinsics

- So far, 2D point is given in meters on image plane
- But: we want 2D point be measured in pixels (as the sensor does)

Camera Extrinsics

- Assume $\tilde{\mathbf{p}}_{w}$ is given in world coordinates
- Transform from world to camera (also called the camera extrinsics)

$$
\tilde{\mathbf{p}}=\left(\begin{array}{cc}
R & \mathbf{t} \\
\mathbf{0}^{\top} & 1
\end{array}\right) \tilde{\mathbf{p}}_{w}
$$

- Full camera matrix

$$
\tilde{\mathbf{x}}=\left(\begin{array}{ccc}
f_{x} & s & c_{x} \\
0 & f_{y} & c_{y} \\
0 & 0 & 1
\end{array}\right)\left(\begin{array}{ll}
R & \mathbf{t}
\end{array}\right) \tilde{\mathbf{p}}_{w}
$$

C++ Libraries for Lin. Alg./Geometry

- Many C++ libraries exist for linear algebra and 3D geometry
- Typically conversion necessary
- Examples:
- C arrays, std::vector (no linear alg. functions)
- gsl (gnu scientific library, many functions, plain C)
- boost::array (used by ROS messages)
- Bullet library (3D geometry, used by ROS tf)
- Eigen (both linear algebra and geometry, my recommendation)

Camera Intrinsics

- Need to apply some scaling/offset

$$
\tilde{\mathbf{x}}=\underbrace{\left(\begin{array}{ccc}
f_{x} & s & c_{x} \\
0 & f_{y} & c_{y} \\
0 & 0 & 1
\end{array}\right)}_{\text {intrinsics } K} \underbrace{\left(\begin{array}{llll}
1 & 0 & 0 & 0 \\
0 & 1 & 0 & 0 \\
0 & 0 & 1 & 0
\end{array}\right)}_{\text {projection }} \tilde{\mathbf{p}}
$$

- Focal length f_{x}, f_{y}
- Camera center c_{x}, c_{y}
- Skew s

Recap: 2D/3D Geometry

- points, lines, planes
- 2D and 3D transformations
- Different representations for 3D orientations
- Choice depends on application
- Which representations do you remember?
- 3D to 2D perspective projections
- You really have to know 2D/3D transformations by heart (read Szeliski, Chapter 2)

Example: Transform Trees in ROS

- TF package represents 3D transforms between rigid bodies in the scene as a tree

Example: Video from PR2	Sensors
Classification of Sensors - What: - Proprioceptive sensors - Measure values internally to the system (robot) - Examples: battery status, motor speed, accelerations, ... - Exteroceptive sensors - Provide information about the environment - Examples: compass, distance to objects, ... - How: - Passive sensors - Measure energy coming from the environment - Active sensors - Emit their proper energy and measure the reaction - Better performance, but influence on environment	Classification of Sensors - Tactile sensors Contact switches, bumpers, proximity sensors, pressure - Wheel/motor sensors Potentiometers, brush/optical/magnetic/inductive/capacitive encoders, current sensors - Heading sensors Compass, infrared, inclinometers, gyroscopes, accelerometers - Ground-based beacons GPS, optical or RF beacons, reflective beacons - Active ranging Ultrasonic sensor, laser rangefinder, optical triangulation, structured light - Motion/speed sensors Doppler radar, Doppler sound - Vision-based sensors CCD/CMOS cameras, visual servoing packages, object tracking packages
Example: Ardrone Sensors - Tactile sensors Contact switches, bumpers, proximity sensors, pressure - Wheel/motor sensors Potentiometers, brush/optical/magnetic/inductive/capacitive encoders, current sensors - Heading sensors Compass, infrared, inclinometers, gyroscopes, accelerometers - Ground-based beacons GPS, optical or RF beacons, reflective beacons - Active ranging Ultrasonic sensor, laser rangefinder, optical triangulation, structured light - Motion/speed sensors Doppler radar, Doppler sound - Vision-based sensors CCD/CMOS cameras, visual servoing packages, object tracking packages	Characterization of Sensor Performance - Bandwidth or Frequency - Delay - Sensitivity - Cross-sensitivity (cross-talk) - Error (accuracy) - Deterministic errors (modeling/calibration possible) - Random errors - Weight, power consumption, ...

Mechanical Gyroscope

- Measures orientation (standard gyro) or angular velocity (rate gyro, needs integration for angle)
- Spinning wheel mounted in a gimbal device (can move freely in 3 dimensions)
- Wheel keeps orientation due to angular momentum (standard gyro)

Accelerometer

- Measures all external forces acting upon them (including gravity)
- Acts like a spring-damper system
- To obtain inertial acceleration (due to motion alone), gravity must be subtracted

Inertial Measurement Unit

- 3-axes MEMS gyroscope
- Provides angular velocity
- Integrate for angular position
- Problem: Drifts slowly over time (e.g., 1deg/hour), called the bias
- 3-axes MEMS accelerometer
- Provides accelerations (including gravity)
- Can we use these sensors to estimate our position?

Modern Gyroscopes

- Vibrating structure gyroscope (MEMS)
- Based on Coriolis effect
- "Vibration keeps its direction under rotation"
- Implementations: Tuning fork, vibrating wheels, ...
- Ring laser / fibre optic gyro
- Interference between counter-propagating beams in response to rotation

MEMS Accelerometers

- Micro Electro-Mechanical Systems (MEMS)
- Spring-like structure with a proof mass
- Damping results from residual gas
- Implementations: capacitive, piezoelectric, ...

Inertial Measurement Unit

- IMU: Device that uses gyroscopes and accelerometers to estimate (relative) position, orientation, velocity and accelerations
- Integrate angular velocities to obtain absolute orientation
- Subtract gravity from acceleration
- Integrate acceleration to linear velocities
- Integrate linear velocities to position
- Note: All IMUs are subject to drift (position is integrated twice!), needs external reference

Example: AscTec Autopilot Board	
GPS - 24+ satellites, 12 hour orbit, 20.190 km height - 6 orbital planes, 4+ satellites per orbit, 60deg distance - Satellite transmits orbital location + time - 50 bits $/ \mathrm{s}$, msg has 1500 bits $\rightarrow 12.5$ minutes	GPS - Position from pseudorange - Requires measurements of 4 different satellites - Low accuracy ($3-15 \mathrm{~m}$) but absolute - Position from pseudorange + phase shift - Very precise (1 mm) but highly ambiguous - Requires reference receiver (RTK/dGPS) to remove ambiguities
Range Sensors - Sonar - Laser range finder - Time of flight camera - Structured light (will be covered later)	Range Sensors - Emit signal to determine distance along a ray - Make use of propagation speed of ultrasound/light - Traveled distance is given by $d=c \cdot t$ - Sound speed: $340 \mathrm{~m} / \mathrm{s}$ - Light speed: $300.000 \mathrm{~km} / \mathrm{s}$

Ultrasonic Range Sensors

- Range between 12 cm and 5 m
- Opening angle around 20 to 40 degrees
- Soft surfaces absorb sound
- Reflections \rightarrow ghosts
- Lightweight and cheap

Laser Scanner

- 2D scanners

- 3D scanners
$\frac{\text { Camera }}{\text { purbats }}$
- Add a barrier to block off most of the rays
- This reduces blurring
- The opening known as the aperture
- How does this transform the image?

Laser Scanner

- Measures phase shift
- Pro: High precision, wide field of view, safety approved for collision detection
- Con: Relatively expensive + heavy

Camera

- Let's design a camera
- Idea 1: put a piece of film in front of an object
- Do we get a reasonable image?

Camera Lens

- A lens focuses light onto the film
- Rays passing through the optical center are not deviated

Camera Lens

- A lens focuses light onto the film
- Rays passing through the center are not deviated
- All rays parallel to the Optical Axis converge at the Focal Point

Lens Distortions

- Radial distortion of the image
- Caused by imperfect lenses
- Deviations are most noticeable for rays that pass through the edge of the lens

Digital Cameras

- Vignetting
- De-bayering
- Rolling shutter and motion blur
- Compression (JPG)
- Noise

Camera Lens

- There is a specific distance at which objects are "in focus"
- Other points project to a "blur circle" in the image

Lens Distortions

- Radial distortion of the image
- Caused by imperfect lenses
- Deviations are most noticeable for rays that pass through the edge of the lens
- Typically compensated with a low-order polynomial

$$
\begin{aligned}
& \hat{x}_{c}=x_{c}\left(1+\kappa_{1} r_{c}^{2}+\kappa_{2} r_{c}^{4}\right) \\
& \hat{y}_{c}=y_{c}\left(1+\kappa_{1} r_{c}^{2}+\kappa_{2} r_{c}^{4}\right)
\end{aligned}
$$

Dead Reckoning and Odometry

- Estimating the position \mathbf{x}_{t} based on the issued controls (or IMU) readings \mathbf{u}_{t}
- Integrated over time $\mathbf{x}_{t}=f\left(\mathbf{x}_{t-1}, \mathbf{u}_{t}\right)$

Exercise Sheet 1

- Odometry sensor on Ardrone is an integrated package
- Sensors
- Down-looking camera to estimate motion
- Ultrasonic sensor to get height
- 3-axes gyroscopes
- 3-axes accelerometer
- IMU readings \mathbf{u}_{t}
- Horizontal speed (vx/vy)
- Height (z)
- Roll, Pitch, Yaw
- Integrate these values to get robot pose $\mathbf{x}_{t}=f\left(\mathbf{x}_{t-1}, \mathbf{u}_{t}\right)$
- Position (x/y/z)
- Orientation (e.g., r/p/y)

Summary

- Linear Algebra
- 2D/3D Geometry
- Sensors

	Organization
Visual Navigation for Flying Robots Probabilistic Models and State Estimation Dr. Jürgen Sturm	- Next week: Three scientific guest talks - Recent research results from our group (2011/12)
Guest Talks - An Evaluation of the RGB-D SLAM System (F. Endres, J. Hess, N. Engelhard, J. Sturm, D. Cremers, W. Burgard), In Proc. of the IEEE Int. Conf. on Robotics and Automation (ICRA), 2012. - Real-Time Visual Odometry from Dense RGB-D Images (F. Steinbruecker, J. Sturm, D. Cremers), In Workshop on Live Dense Reconstruction with Moving Cameras at the Intl. Conf. on Computer Vision (ICCV), 2011. - Camera-Based Navigation of a Low-Cost Quadrocopter (J. Engel, J. Sturm, D. Cremers), Submitted to International Conference on Robotics and Systems (IROS), under review.	Perception - Perception and models are strongly linked Visual Navigation for Flying Robots. Dr. Jürgen Sturm, Computer Vision Group, TUM
Perception - Perception and models are strongly linked - Example: Human Perception Visual Navigation for Flying Robots	

Models in Human Perception - Count the black dots	State Estimation - Cannot observe world state directly - Need to estimate the world state - Robot maintains belief about world state - Update belief according to observations and actions using models - Sensor observations + sensor model - Executed actions + action/motion model
State Estimation What parts of the world state are (most) relevant for a flying robot?	State Estimation What parts of the world state are (most) relevant for a flying robot? - Position - Velocity - Obstacles - Map - Positions and intentions of other robots/humans
Models and State Estimation	(Deterministic) Sensor Model - Robot perceives the environment through its sensors $\begin{gathered} z=h(x) \\ \uparrow \\ \begin{array}{c} z \\ \text { sensor } \\ \text { reading } \end{array} \\ \begin{array}{c} \text { observation } \\ \text { state } \\ \text { function } \end{array} \end{gathered}$ - Goal: Infer the state of the world from sensor readings $x=h^{-1}(z)$ \qquad \qquad

(Deterministic) Motion Model

- Robot executes an action u (e.g., move forward at $1 \mathrm{~m} / \mathrm{s}$)
- Update belief state according to motion model

Visual Navigation for Flying Robots

Probabilistic Robotics

- Probabilistic sensor and motion models

$$
p(z \mid x) \quad p\left(x^{\prime} \mid x, u\right)
$$

- Integrate information from multiple sensors (multi-modal)

$$
p\left(x \mid z_{\text {vision }}, z_{\text {ultrasound }}, z_{\mathrm{IMU}}\right)
$$

- Integrate information over time (filtering)

$$
\begin{gathered}
p\left(x \mid z_{1}, z_{2}, \ldots, z_{t}\right) \\
p\left(x \mid u_{1}, z_{1}, \ldots, u_{t}, z_{t}\right)
\end{gathered}
$$

The Axioms of Probability Theory

Notation: $P(A)$ refers to the probability that proposition A holds

1. $0 \leq P(A) \leq 1$
2. $P(\Omega)=1 \quad P(\emptyset)=0$
3. $P(A \cup B)=P(A)+P(B)-P(A \cap B)$

Discrete Random Variables

- X denotes a random variable
- X can take on a countable number of values in $\left\{x_{1}, x_{2}, \ldots x_{n}\right\}$
- $P\left(X=x_{i}\right)$ is the probability that the random variable X takes on value x_{i}
- $P(\cdot)$ is called the probability mass function
- Example: $P($ Room $)=<0.7,0.2,0.08,0.02>$ Room $\in\{$ office, corridor, lab, kitchen $\}$
Visual Navigation for Flying Robots 19

Proper Distributions Sum To One

- Discrete case

$$
\sum_{x} P(x)=1
$$

- Continuous case

$$
\int p(x) \mathrm{d} x=1
$$

Conditional Independence

- Definition of conditional independence

$$
P(x, y \mid z)=P(x \mid z) P(y \mid z)
$$

- Equivalent to $P(x \mid z)=P(x \mid y, z)$

$$
P(y \mid z)=P(x \mid x, z)
$$

- Note: this does not necessarily mean that

$$
P(x, y)=P(x) P(y)
$$

Continuous Random Variables

- X takes on continuous values
- $p(X=x)$ or $p(x)$ is called the probability density function (PDF)

$$
P(x \in[a, b])=\int_{a}^{b} p(x) \mathrm{d} x
$$

- Example

Visual Navigation for Flying Robots

Joint and Conditional Probabilities

- $P(X=x$ and $Y=y)=P(x, y)$
- If X and Y are independent then

$$
P(x, y)=P(x) P(y)
$$

- $P(x \mid y)$ is the probability of \mathbf{x} given \mathbf{y}

$$
P(x \mid y) P(y)=P(x, y)
$$

- If X and Y are independent then

$$
P(x \mid y)=P(x)
$$

Visual Navigation for Flying Robots

Marginalization

- Discrete case

$$
P(x)=\sum_{y} P(x, y)
$$

- Continuous case

$$
p(x)=\int p(x, y) \mathrm{d} y
$$

Example: Sensor Measurement

- Sensor model $P(Z=$ bright $\mid X=$ home $)=0.6$
$P(Z=$ bright $\mid X=\neg$ home $)=0.3$
- Prior on world state $P(X=$ home $)=0.5$
- Probability after observation (using Bayes)

$$
\begin{aligned}
& P(X=\text { home } \mid Z=\text { noise }) \\
& =\frac{P(\text { bright } \mid \text { home }) P(\text { home })}{P(\text { bright } \mid \text { home }) P(\text { home })+P(\text { bright } \mid \neg \text { home }) P(\neg \text { home })} \\
& =\frac{0.6 \cdot 0.5}{0.6 \cdot 0.5+0.3 \cdot 0.5}=\frac{0.3}{0.3+0.15}=0.67
\end{aligned}
$$

Combining Evidence

- Suppose our robot obtains another observation z_{2} (either from the same or a different sensor)
- How can we integrate this new information?
- More generally, how can we estimate $p\left(x \mid z_{1}, z_{2}, \ldots\right)$?
- Bayes formula gives us:

$$
P\left(x \mid z_{1}, \ldots, z_{n}\right)=\frac{P\left(z_{n} \mid x, z_{1}, \ldots, z_{n-1}\right) P\left(x \mid z_{1}, \ldots, z_{n-1}\right)}{P\left(z_{n} \mid z_{1}, \ldots, z_{n-1}\right)}
$$

Recursive Bayesian Updates

$$
P\left(x \mid z_{1}, \ldots, z_{n}\right)=\frac{P\left(z_{n} \mid x, z_{1}, \ldots, z_{n-1}\right) P\left(x \mid z_{1}, \ldots, z_{n-1}\right)}{P\left(z_{n} \mid z_{1}, \ldots, z_{n-1}\right)}
$$

- Markov Assumption:
z_{n} is independent of z_{1}, \ldots, z_{n-1} if we know x

Combining Evidence

- Suppose our robot obtains another observation z_{2} (either from the same or a different sensor)
- How can we integrate this new information?
- More generally, how can we estimate $p\left(x \mid z_{1}, z_{2}, \ldots\right)$?

Recursive Bayesian Updates

$P\left(x \mid z_{1}, \ldots, z_{n}\right)=\frac{P\left(z_{n} \mid x, z_{1}, \ldots, z_{n-1}\right) P\left(x \mid z_{1}, \ldots, z_{n-1}\right)}{P\left(z_{n} \mid z_{1}, \ldots, z_{n-1}\right)}$

Recursive Bayesian Updates

$$
P\left(x \mid z_{1}, \ldots, z_{n}\right)=\frac{P\left(z_{n} \mid x, z_{1}, \ldots, z_{n-1}\right) P\left(x \mid z_{1}, \ldots, z_{n-1}\right)}{P\left(z_{n} \mid z_{1}, \ldots, z_{n-1}\right)}
$$

- Markov Assumption:
z_{n} is independent of z_{1}, \ldots, z_{n-1} if we know x

$$
\begin{aligned}
P\left(x \mid z_{1}, \ldots, z_{n}\right) & =\frac{P\left(z_{n} \mid x\right) P\left(x \mid z_{1}, \ldots, z_{n-1}\right)}{P\left(z_{n} \mid z_{1}, \ldots, z_{n-1}\right)} \\
& =\eta P\left(z_{n} \mid x\right) P\left(x \mid z_{1}, \ldots, z_{n-1}\right) \\
& =\eta_{1: n} \prod_{i=1, \ldots, n} P\left(z_{i} \mid x\right) P(x)
\end{aligned}
$$

Example: Second Measurement

- Sensor model $P\left(Z_{2}=\right.$ marker $\mid X=$ home $)=0.8$

$$
P\left(Z_{2}=\text { marker } \mid X=\neg \text { home }\right)=0.1
$$

- Previous estimate $P\left(X=\right.$ home $\mid Z_{1}=$ bright $)=0.67$
- Assume robot does not observe marker
- What is the probability of being home?
$P\left(X=\right.$ home $\mid Z_{1}=$ bright, $Z_{2}=\neg$ marker $)$
$P(\neg$ marker \mid home $) P$ (home \mid bright $)$
$P(\neg$ marker \mid home $) P($ home \mid bright $)+P(\neg$ marker $\mid \neg$ home $) P(\neg$ home \mid bright $)$
$=\frac{0.2 \cdot 0.67}{0.2 \cdot 0.67+0.9 \cdot 0.33}=0.31$
Visual Navigation for Flying Robots
43
Dr. Jürgen Sturm, Computer Vision Group, TUM

Actions (Motions)

- Often the world is dynamic since
- actions carried out by the robot...
- actions carried out by other agents...
- or just time passing by...
...change the world
- How can we incorporate actions?

Action Models

- To incorporate the outcome of an action u into the current state estimate ("belief"), we use the conditional pdf

$$
p\left(x^{\prime} \mid u, x\right)
$$

- This term specifies the probability that executing the action u in state x will lead to state x^{\prime}

Example: Second Measurement

- Sensor model $P\left(Z_{2}=\right.$ marker $\mid X=$ home $)=0.8$

$$
P\left(Z_{2}=\text { marker } \mid X=\neg \text { home }\right)=0.1
$$

- Previous estimate $P\left(X=\right.$ home $\mid Z_{1}=$ bright $)=0.67$
- Assume robot does not observe marker
- What is the probability of being home?

$$
P\left(X=\text { home } \mid Z_{1}=\operatorname{bright}, Z_{2}=\neg \text { marker }\right)
$$

$P(\neg$ marker \mid home $) P$ (home | bright)
$=\overline{P(\neg \text { marker } \mid \text { home }) P(\text { home } \mid \text { bright })+P(\neg \text { marker } \mid \neg \text { home }) P(\neg \text { home } \mid \text { bright })}$
$=\frac{0.2 \cdot 0.67}{0.2 \cdot 0.67+0.9 \cdot 0.33}=0.31 \quad$ The second observation lowers the probability that the robot is above the landing zone!
Visual Navigation for Flying Robots 44
Dr. Jürgen Sturm, Computer Vision Group, TUM

Typical Actions

- Quadrocopter accelerates by changing the speed of its motors
- Position also changes when quadrocopter does "nothing" (and drifts..)
- Actions are never carried out with absolute certainty
- In contrast to measurements, actions generally increase the uncertainty of the state estimate

Example: Take-Off

- Action: $\quad u \in\{$ takeoff $\}$
- World state: $\quad x \in\{$ ground, air $\}$

Integrating the Outcome of Actions

- Discrete case

$$
P\left(x^{\prime} \mid u\right)=\sum_{x} P\left(x^{\prime} \mid u, x\right) P(x)
$$

- Continuous case

$$
p\left(x^{\prime} \mid u\right)=\int p\left(x^{\prime} \mid u, x\right) p(x) \mathrm{d} x
$$

\qquad 49 Dr. Jürgen Sturm, Computer Vision Group, TUM

Markov Chain

- A Markov chain is a stochastic process where, given the present state, the past and the future states are independent

Visual Navigation for Flyng Robots

Bayes Filter

- Given:
- Stream of observations z and actions u :

$$
\mathbf{d}_{t}=\left(u_{1}, z_{1}, \ldots, u_{t}, z_{t}\right)^{\top}
$$

- Sensor model $P(z \mid x)$
- Action model $P\left(x^{\prime} \mid x, u\right)$
- Prior probability of the system state $P(x)$
- Wanted:
- Estimate of the state x of the dynamic system
- Posterior of the state is also called belief

$$
\operatorname{Bel}\left(x_{t}\right)=P\left(x_{t} \mid u_{1}, z_{1}, \ldots, u_{t}, z_{t}\right)
$$

Visual Navigation for Flying Robots
53

Example: Take-Off

- Prior belief on robot state: $P(x=$ ground $)=1.0$ (robot is located on the ground)
- Robot executes "take-off" action
- What is the robot's belief after one time step?

$$
\begin{aligned}
P\left(x^{\prime}=\text { ground }\right) & =\sum_{x} P\left(x^{\prime}=\text { ground } \mid u, x\right) P(x) \\
& =P\left(x^{\prime}=\text { ground } \mid u, x=\text { ground }\right) P(x=\text { ground }) \\
& +P\left(x^{\prime}=\text { ground } \mid u, x=\operatorname{air}\right) P(x=\text { air }) \\
& =0.1 \cdot 1.0+0.01 \cdot 0.0=0.1
\end{aligned}
$$

- Question: What is the probability at $\mathrm{t}=2$?

Visual Navigation for Flying Robots
50
Dr. Jürgen Sturm, Computer Vision Group, TUM

Markov Assumption

- Observations depend only on current state

$$
P\left(z_{t} \mid x_{0: t}, z_{1: t-1}, u_{1: t}\right)=P\left(z_{t} \mid x_{t}\right)
$$

- Current state depends only on previous state and current action

$$
P\left(x_{t} \mid x_{0: t-1}, z_{1: t}, u_{1: t}\right)=P\left(x_{t} \mid x_{t-1}, u_{t}\right)
$$

- Underlying assumptions
- Static world
- Independent noise
- Perfect model, no approximation errors

Visual Navigation for Flying Robots

Bayes Filter

For each time step, do

1. Apply motion model

$$
\overline{\operatorname{Bel}}\left(x_{t}\right)=\sum_{x_{t-1}} P\left(x_{t} \mid x_{t-1}, u_{t}\right) \operatorname{Bel}\left(x_{t-1}\right)
$$

2. Apply sensor model

$$
\operatorname{Bel}\left(x_{t}\right)=\eta P\left(z_{t} \mid x_{t}\right) \overline{\operatorname{Bel}}\left(x_{t}\right)
$$

Note: Bayes filters also work on continuous state spaces (replace sum by integral)

Visual Navigation for Flying Robots 54

Example: Localization

- Discrete state $x \in\{1,2, \ldots, w\} \times\{1,2, \ldots, h\}$
- Belief distribution can be represented as a grid
- This is also called a histogram filter

Example: Localization

- Action $u \in\{$ north, east, south, west $\}$
- Robot can move one cell in each time step
- Actions are not perfectly executed
- Example: move east

$$
x_{t-1}=\square, u=\text { east } \Rightarrow \square \square \square \square \square \square \square
$$

60% success rate, 10% to stay/move too far/ move one up/move one down

Example: Localization

- Let's start a simulation run... (shades are handdrawn, not exact!)

Example: Localization

- Action $u \in\{$ north, east, south, west $\}$
- Robot can move one cell in each time step
- Actions are not perfectly executed

Visual Navigation for Flying Robots

Example: Localization

- Observation $z \in\{$ marker, \neg marker $\}$
- One (special) location has a marker
- Marker is sometimes also detected in neighboring cells

Visual Navigation for Flying Robots

Example: Localization

- t=0
- Prior distribution (initial belief)
- Assume we know the initial location (if not, we could initialize with a uniform prior)

Example: Localization

- t=1, u=east, $\mathrm{z}=\mathrm{no}$-marker
- Bayes filter step 1: Apply motion model

Visual Navigation for Flying Robots

Example: Localization

- t=2, u=east, z=marker
- Bayes filter step 2: Apply motion model

Visual Navigation for Flying Robots

Bayes Filter - Summary

- Markov assumption allows efficient recursive Bayesian updates of the belief distribution
- Useful tool for estimating the state of a dynamic system
- Bayes filter is the basis of many other filters
- Kalman filter
- Particle filter
- Hidden Markov models
- Dynamic Bayesian networks
- Partially observable Markov decision processes (POMDPs)

Visual Navigation for Flying Robots
65

Example: Localization

- $\mathrm{t}=1, \mathrm{u}=\mathrm{east} \mathrm{z}=\mathrm{no}$-marker
- Bayes filter step 2: Apply observation model

Visual Navigation for Flying Robots 62

Dr. Jürgen Sturm, Computer Vision Group. TUM

Example: Localization

- t=2, u=east, z=marker
- Bayes filter step 1: Apply observation model

Msual Navigation for Flying Robots
64

Dr. Jürgen Sturm, Computer Vision Group, TUM

Kalman Filter

- Bayes filter with continuous states
- State represented with a normal distribution
- Developed in the late 1950’s
- Kalman filter is very efficient (only requires a few matrix operations per time step)
- Applications range from economics, weather forecasting, satellite navigation to robotics and many more
- Most relevant Bayes filter variant in practice \rightarrow exercise sheet 2

Visual Navigation for Flying Robots 66

Dr. Jürgen Sturm, Computer Vision Group, TUM

Normal Distribution

- Univariate normal distribution

$$
\begin{gathered}
X \sim \mathcal{N}(\mu, \sigma) \\
p(X=x)=\frac{1}{\sqrt{2 \pi} \sigma} \exp \left(-\frac{1}{2} \frac{(x-\mu)^{2}}{\sigma^{2}}\right)
\end{gathered}
$$

Properties of Normal Distributions

- Linear transformation \rightarrow remains Gaussian

$$
\begin{aligned}
& X \sim \mathcal{N}(\mu, \Sigma), Y \sim A X+B \\
& \Rightarrow Y \sim \mathcal{N}\left(A \mu+B, A \Sigma A^{\top}\right)
\end{aligned}
$$

- Intersection of two Gaussians \rightarrow remains Gaussian

$$
X_{1} \sim \mathcal{N}\left(\mu_{1}, \Sigma_{1}\right), X_{2} \sim \mathcal{N}\left(\mu_{2}, \Sigma_{2}\right)
$$

$\Rightarrow p\left(X_{1}, X_{2}\right)=\mathcal{N}\left(\frac{\Sigma_{2}}{\Sigma_{1}+\Sigma_{2}} \mu_{1}+\frac{\Sigma_{1}}{\Sigma_{1}+\Sigma_{2}} \mu_{2}, \frac{1}{\Sigma_{1}^{-1}+\Sigma_{2}^{-1}}\right)$
Visual Navigation for Flying Robots

Linear Process Model

- Consider a time-discrete stochastic process
- Represent the estimated state (belief) by a Gaussian

$$
x_{t} \sim \mathcal{N}\left(\mu_{t}, \Sigma_{t}\right)
$$

Normal Distribution

- Multivariate normal distribution
$X \sim \mathcal{N}(\mu, \Sigma)$

$$
p(\mathbf{x})=\mathcal{N}(\mathbf{x} ; \mu, \Sigma)
$$

$$
=\frac{1}{(2 \pi)^{d / 2}|\Sigma|^{1 / 2}} \exp \left(-\frac{1}{2}(\mathbf{x}-\mu)^{\top} \Sigma^{-1}(\mathbf{x}-\mu)\right)
$$

- Example: 2-dimensional normal distribution
pdf

iso lines

Linear Process Model

- Consider a time-discrete stochastic process (Markov chain)

Linear Process Model

- Consider a time-discrete stochastic process
- Represent the estimated state (belief) by a Gaussian $\quad x_{t} \sim \mathcal{N}\left(\mu_{t}, \Sigma_{t}\right)$
- Assume that the system evolves linearly over time, then

$$
x_{t}=A x_{t-1}
$$

Linear Process Model

- Consider a time-discrete stochastic process
- Represent the estimated state (belief) by a Gaussian $\quad x_{t} \sim \mathcal{N}\left(\mu_{t}, \Sigma_{t}\right)$
- Assume that the system evolves linearly over time and depends linearly on the controls

$$
x_{t}=A x_{t-1}+B u_{t}
$$

Linear Observations

- Further, assume we make observations that depend linearly on the state

$$
z_{t}=C x_{t}
$$

Linear Process Model

- Consider a time-discrete stochastic process
- Represent the estimated state (belief) by a Gaussian $\quad x_{t} \sim \mathcal{N}\left(\mu_{t}, \Sigma_{t}\right)$
- Assume that the system evolves linearly over time, depends linearly on the controls, and has zero-mean, normally distributed process noise

$$
x_{t}=A x_{t-1}+B u_{t}+\epsilon_{t}
$$

with $\epsilon_{t} \sim \mathcal{N}(0, Q)$
\qquad

Linear Observations

- Further, assume we make observations that depend linearly on the state and that are perturbed by zero-mean, normally distributed observation noise

$$
z_{t}=C x_{t}+\delta_{t}
$$

with $\delta_{t} \sim \mathcal{N}(0, R)$

Variables and Dimensions

- State $x \in \mathbb{R}^{n}$
- Controls $u \in \mathbb{R}^{l}$
- Observations $z \in \mathbb{R}^{k}$
- Process equation

$$
x_{t}=\underbrace{A}_{n \times n} x_{t-1}+\underbrace{B}_{n \times l} u_{t}+\epsilon
$$

- Measurement equation

$$
z_{t}=\underbrace{C}_{n \times k} x_{t}+\delta_{t}
$$

Visual Navigation for Flying Robots
Dr. Jürgen Sturm, Computer Vision Group, TUM

Kalman Filter

- Initial belief is Gaussian

$$
\operatorname{Bel}\left(x_{0}\right)=\mathcal{N}\left(x_{0} ; \mu_{0}, \Sigma_{0}\right)
$$

- Next state is also Gaussian (linear transformation)

$$
x_{t} \sim \mathcal{N}\left(A x_{t-1}+B u_{t}, Q\right)
$$

- Observations are also Gaussian

$$
z_{t} \sim \mathcal{N}\left(C x_{t}, R\right)
$$

From Bayes Filter to Kalman Filter

For each time step, do
2. Apply sensor model

$$
\begin{aligned}
\operatorname{Bel}\left(x_{t}\right) & =\eta \underbrace{p\left(z_{t} \mid x_{\mathcal{N}}\right)}_{\mathcal{N}\left(z_{t} ; C x_{t}, R\right)} \underbrace{\overline{\operatorname{Bel}}\left(x_{t}\right)}_{\left(x_{t} ; \bar{\mu}_{t}, \Sigma_{t}\right)} \\
& =\mathcal{N}\left(x_{t} ; \bar{\mu}_{t}+K_{t}\left(z_{t}-C \bar{\mu}\right),\left(I-K_{t} C\right) \bar{\Sigma}\right) \\
& =\mathcal{N}\left(x_{t} ; \mu_{t}, \Sigma_{t}\right)
\end{aligned}
$$

with $K_{t}=\bar{\Sigma}_{t} C^{\top}\left(C \bar{\Sigma}_{t} C^{\top}+R\right)^{-1}$

Kalman Filter

For each time step, do

1. Apply motion model

$$
\begin{aligned}
& \bar{\mu}_{t}=A \mu_{t-1}+B u_{t} \\
& \bar{\Sigma}_{t}=A \Sigma A^{\top}+Q
\end{aligned}
$$

2. Apply sensor model

$$
\begin{aligned}
& \mu_{t}=\bar{\mu}_{t}+K_{t}\left(z_{t}-C \bar{\mu}_{t}\right) \\
& \Sigma_{t}=\left(I-K_{t} C\right) \bar{\Sigma}_{t}
\end{aligned}
$$

with $K_{t}=\bar{\Sigma}_{t} C^{\top}\left(C \bar{\Sigma}_{t} C^{\top}+R\right)^{-1}$

For the interested readers: See Probabilistic Robotics for full derivation (Chapter 3)

Kalman Filter

- Highly efficient: Polynomial in the measurement dimensionality k and state dimensionality n :

$$
O\left(k^{2.376}+n^{2}\right)
$$

- Optimal for linear Gaussian systems!
- Most robotics systems are nonlinear!

Nonlinear Dynamical Systems

- Most realistic robotic problems involve nonlinear functions
- Motion function

$$
x_{t}=g\left(u_{t}, x_{t-1}\right)
$$

- Observation function

$$
z_{t}=h\left(x_{t}\right)
$$

Extended Kalman Filter

For each time step, do

1. Apply motion model

$$
\begin{aligned}
& \bar{\mu}_{t}=g\left(\mu_{t-1}, u_{t}\right) \\
& \bar{\Sigma}_{t}=G_{t} \Sigma G_{t}^{\top}+Q \text { with } G_{t}=\frac{\partial g\left(\mu_{t-1}, u_{t}\right)}{\partial x_{t-1}}
\end{aligned}
$$

2. Apply sensor model

$$
\begin{aligned}
& \mu_{t}=\bar{\mu}_{t}+K_{t}\left(z_{t}-h\left(\bar{\mu}_{t}\right)\right) \\
& \Sigma_{t}=\left(I-K_{t} H_{t}\right) \bar{\Sigma}_{t}
\end{aligned}
$$

with $K_{t}=\bar{\Sigma}_{t} H_{t}^{\top}\left(H_{t} \bar{\Sigma}_{t} H_{t}^{\top}+R\right)^{-1}$ and $H_{t}=\frac{\partial h\left(\bar{\mu}_{t}\right)}{\partial x_{t}}$

Example

- Motion Function and its derivative

$$
\begin{array}{r}
g(\mathbf{x}, \mathbf{u})=\left(\begin{array}{c}
x+(\cos (\psi) \dot{x}-\sin (\psi) \dot{y}) \Delta t \\
y+(\sin (\psi) \dot{x}+\cos (\psi) \dot{y}) \Delta t \\
\psi+\dot{\psi} \Delta t
\end{array}\right) \\
G=\frac{\partial g(\mathbf{x}, \mathbf{u})}{\partial \mathbf{x}}=\left(\begin{array}{ccc}
1 & 0 & (-\sin (\psi) \dot{x}-\cos (\psi) \dot{y}) \Delta t \\
0 & 1 & (\cos (\psi) \dot{x}+\sin (\dot{\psi}) \dot{y}) \Delta t \\
0 & 0 & 1
\end{array}\right)
\end{array}
$$

Example

- Observation Function (\rightarrow Sheet 2)

$$
\begin{aligned}
& h(\mathbf{x})=\ldots \\
& H=\frac{\partial h(\mathbf{x})}{\partial x}=\ldots
\end{aligned}
$$

Example - Dead reckoning (no observations) - Large process noise in $x+y$	Example - Dead reckoning (no observations) - Large process noise in $x+y+y a w$
Example - Now with observations (limited visibility) - Assume robot knows correct starting pose	Example - What if the initial pose $(x+y)$ is wrong?
Example - What if the initial pose $(x+y+y a w)$ is wrong?	Example - If we are aware of a bad initial guess, we set the initial sigma to a large value (large uncertainty)

Pulse Width Modulation (PWM)

- Protocol used to control motor speed
- Remote controls typically output PWM

Control Architecture

Example: 1D Kinematics

- State $\quad \mathrm{x}=\left(\begin{array}{lll}x & \dot{x} & \ddot{x}\end{array}\right)^{\top} \in \mathbb{R}^{3}$
- Action $u \in \mathbb{R}$
- Process model

$$
\mathbf{x}_{t}=\left(\begin{array}{ccc}
1 & \Delta t & 0 \\
0 & 1 & \Delta t \\
0 & 0 & 1
\end{array}\right) \mathbf{x}_{t-1}+\left(\begin{array}{l}
0 \\
0 \\
1
\end{array}\right) u_{t}
$$

- Kalman filter
- How many states do we need for 3D?

Dynamics - Essential Equations

- Force (Kraft)

$$
m \ddot{\mathbf{x}}=\sum_{i} F_{i}
$$

- Torque (Drehmoment)

$$
J \alpha=\sum_{i} \boldsymbol{\tau}_{i}
$$

Forces

- Gravity $F_{\text {grav }}=m g$
- Friction
- Stiction (static friction) $F_{\text {stiction }}=c_{s} \operatorname{sign} \dot{x}$
- Damping (viscous friction) $F_{\text {damping }}=D \dot{x}$
- Spring $F_{\text {spring }}=K\left(x-x_{\text {eq }}\right)$
- Magnetic force
- ...

Torques

- Definition $\boldsymbol{\tau}=F \times \mathbf{r}$
- Torques sum up $\boldsymbol{\tau}_{\text {net }}=\sum \boldsymbol{\tau}_{i}$
- Torque results in angular acceleration $\boldsymbol{\tau}=J \boldsymbol{\alpha}$ (with $\alpha=\frac{\mathrm{d} \omega}{\mathrm{d} t}, J$ moment of inertia)
- Friction same as before...

Vertical Acceleration

- Thrust $\quad F_{\text {thrust }}=F_{1}+F_{2}+F_{3}+F_{4}$

- Combination of spring and damper
- Forces $F=F_{\text {damping }}+F_{\text {spring }}$
- Resulting dynamics $m \ddot{x}=D \dot{x}+K\left(x-x_{\text {eq }}\right)$

Dynamics of a Quadrocopter

- Each propeller induces force and torque by accelerating air
- Gravity pulls quadrocopter downwards

Visual Navigation for Flying Robots

Vertical and Horizontal Acceleration

- Thrust $\quad F_{\text {thrust }}=F_{1}+F_{2}+F_{3}+F_{4}$

Vertical and Horizontal Acceleration

- Thrust $\quad F_{\text {thrust }}=F_{1}+F_{2}+F_{3}+F_{4}$
- Acceleration $\ddot{\mathbf{x}}_{\text {global }}=\left(R_{R P Y} F_{\text {thrust }}-F_{\text {grav }}\right) / m$

Yaw

- Each propeller induces torque due to rotation and the interaction with the air
- Induced torque $\tau=\tau_{1}-\tau_{2}+\tau_{3}-\tau_{4}$
- Induced angular acceleration

Assumptions of Cascaded Control

- Dynamics of inner loops is so fast that it is not visible from outer loops
- Dynamics of outer loops is so slow that it appears as static to the inner loops

Pitch (and Roll)

- Attitude changes when opposite motors generate unequal thrust
- Induced torque $\boldsymbol{\tau}=\left(F_{1}-F_{3}\right) \times \mathbf{r}$
- Induced angular acceleration

Visual Navigation for Flying Robots
20
Dr. Jürgen Sturm, Computer Vision Group, TUM

Cascaded Control

Cascaded Control Example

- Motor control happens on motor boards (controls every motor tick)
- Attitude control implemented on microcontroller with hard real-time (at 1000 Hz)
- Position control (at $10-250 \mathrm{~Hz}$)
- Trajectory (waypoint) control (at $0.1-1 \mathrm{~Hz}$)

Feedback Control - Generic Idea	Feedback Control - Generic Idea
Visual Navigation for Flying Robots $\quad 25 \quad$ Dr.JÜrgen Sturm, Computer Vision Group, TUM	Visual Navigation for Flying Robots $\quad 26.0$ Dr.Jürgen Sturm, Computer Vision Group, TUM
Feedback Control - Generic Idea	Feedback Control - Generic Idea
Feedback Control - Example	Measurement Noise What effect has noise in the measurements? - Poor performance for $K=1$ - How can we fix this?

Delays

- What is the total dead time of this system?

Visual Navigation for Flying Robots 37

Delays

- What is the total dead time of this system?

- Can we distinguish delays in the measurement from delays in actuation? No!

Visual Navigation for Flying Robots
39

Smith Predictor

- Plant model is available
- 5 seconds delay
- Results in perfect compensation
- Why is this unrealistic in practice?

Delays

- What is the total dead time of this system?

- Can we distinguish delays in the measurement from delays in actuation?
Visual Navigation for Flying Robots ${ }_{3}{ }^{3}$

Dr. Jürgen Sturm, Computer Vision Group, TUM

Smith Predictor

- Allows for higher gains
- Requires (accurate) model of plant

Vsual Navigation for Flying Robots

Smith Predictor

- Time delay (and plant model) is often not known accurately (or changes over time)
- What happens if time delay is overestimated?

Smith Predictor

- Time delay (and plant model) is often not known accurately (or changes over time)
- What happens if time delay is underestimated?

Rigid Body Kinematics

- Consider a rigid body
- Free floating in 1D space, no gravity
- How does this system evolve over time?

Rigid Body Kinematics

- Consider a rigid body
- Free floating in 1D space, no gravity
- How does this system evolve over time?
- Example: $x_{0}=0, \dot{x}_{0}=0.1$

Position Control

Rigid Body Kinematics

- Consider a rigid body
- Free floating in 1D space, no gravity
- How does this system evolve over time?
- Example: $x_{0}=0, \dot{x}_{0}=0$

Rigid Body Kinematics

- Consider a rigid body
- Free floating in 1D space, no gravity
- In each time instant, we can apply a force F
- Results in acceleration $\ddot{x}=F / m$
- Desired position $x_{\text {des }}=1$

P Control

- What happens for this control law?

$$
u_{t}=K\left(x_{\mathrm{des}}-x_{t-1}\right)
$$

- This is called proportional control

PD Control

- What happens for this control law?

$$
u_{t}=K_{P}\left(x_{\mathrm{des}}-x_{t-1}\right)+K_{D}\left(\dot{x}_{\mathrm{des}}-\dot{x}_{t-1}\right)
$$

- Proportional-Derivative control

PD Control

- What happens for this control law?

$$
u_{t}=K_{P}\left(x_{\mathrm{des}}-x_{t-1}\right)+K_{D}\left(\dot{x}_{\mathrm{des}}-\dot{x}_{t-1}\right)
$$

- What if we set lower gains?

P Control

- What happens for this control law?

$$
u_{t}=K\left(x_{\mathrm{des}}-x_{t-1}\right)
$$

- This is called proportional control

Visual Navigation for Flying Robots
50
Dr. Jürgen Sturm, Computer Vision Group, TUM

PD Control

- What happens for this control law?

$$
u_{t}=K_{P}\left(x_{\mathrm{des}}-x_{t-1}\right)+K_{D}\left(\dot{x}_{\mathrm{des}}-\dot{x}_{t-1}\right)
$$

- What if we set higher gains?

PD Control

- What happens when we add gravity?

Gravity compensation

- Add as an additional term in the control law $u_{t}=K_{P}\left(x_{\text {des }}-x_{t-1}\right)+K_{D}\left(\dot{x}_{\text {des }}-\dot{x}_{t-1}\right)+F_{\text {grav }}$
- Any known (inverse) dynamics can be included

PID Control

- Idea: Estimate the system error (bias) by integrating the error
$u_{t}=K_{P}\left(x_{\mathrm{des}}-x_{t}\right)+K_{D}\left(\dot{x}_{\mathrm{des}}-\dot{x}_{t}\right)+K_{I} \int^{t} x_{\text {des }}-x_{t} \mathrm{~d} t$
- Proportional+Derivative+Integral Control

Example: Wind-up effect

- Quadrocopter gets stuck in a tree \rightarrow does not reach steady state
- What is the effect on the I-term?

PD Control

- What happens when we have systematic errors? (noise with non-zero mean)
- Example: unbalanced quadrocopter, wind, ...
- Does the robot ever reach its desired location?

Visual Navigation for Flying Robots
56
Dr.Jürgen Sturm, Computer Vision Group TUM

PID Control

- Idea: Estimate the system error (bias) by integrating the error
$u_{t}=K_{P}\left(x_{\text {des }}-x_{t}\right)+K_{D}\left(\dot{x}_{\text {des }}-\dot{x}_{t}\right)+K_{I} \int^{t} x_{\text {des }}-x_{t} \mathrm{~d} t$
- Proportional+Derivative+Integral Control
- For steady state systems, this can be reasonable
- Otherwise, it may create havoc or even disaster (wind-up effect)
sual Navigation for Flying Robots
or. Jurgen sturm, Computer Vision Group, TUM

De-coupled Control

- So far, we considered only single-input, singleoutput systems (SISO)
- Real systems have multiple inputs + outputs
- MIMO (multiple-input, multiple-output)
- In practice, control is often de-coupled

[^0]How to Choose the Coefficients?

- Gains too large: overshooting, oscillations
- Gains too small: long time to converge
- Heuristic methods exist
- In practice, often tuned manually

Ardrone: Inner Control Loop

- Plant input: motor torques

$$
\mathbf{u}_{\mathrm{inner}}=\left(\begin{array}{llll}
\tau_{1} & \tau_{2} & \tau_{3} & \tau_{4}
\end{array}\right)^{\top}
$$

- Plant output: roll, pitch, yaw rate, z velocity

attitude (measured using gyro + accelerometer)	$\mathbf{x}_{\text {inner }}^{\omega_{x}} \quad \omega_{y} \quad \dot{\omega}_{z}$	$\dot{z})^{\top}$		
Visual Navigation for flying Robots			$\underbrace{\text { Mechanical Equivalent }}_{$	z velocity
:---:				
(measured using ult				
distance sensor + a	$}$			

- PD Control is equivalent to adding springdampers between the desired values and the current position

65

PID Control - Summary

PID is the most used control technique in practice

- P control \rightarrow simple proportional control, often enough
- Pl control \rightarrow can compensate for bias (e.g., wind)
- PD control \rightarrow can be used to reduce overshoot (e.g., when acceleration is controlled)
- PID control \rightarrow all of the above

Visual Navigation for Flying Robots
66
Dr. Jürgen Sturm, Computer Vision Group, TUM

Optimal Control

What other control techniques do exist?

- Linear-quadratic regulator (LQR)
- Reinforcement learning
- Inverse reinforcement learning
- ... and many more

Optimal Control

- Find the controller that provides the best performance
- Need to define a measure of performance
- What would be a good performance measure?
- Minimize the error?
- Minimize the controls?
- Combination of both?

Reinforcement Learning

- In principle, any measure can be used
- Define reward for each state-action pair

$$
R\left(x_{t}, u_{t}\right)
$$

- Find the policy (controller) that maximizes the expected future reward
- Compute the expected future reward based on
- Known process model
- Learned process model (from demonstrations)

Goal: Find the controller with the lowest cost \rightarrow LQR control

Visual Navigation for Flying Robots
69
Or. Jürgen Sturm, Computer Vision Group, TUM

Inverse Reinforcement Learning

- Parameterized reward function
- Learn these parameters from expert demonstrations and refine
- Example: [Abbeel and Ng, ICML 2010]

Autonomous Indoor 3D Exploration with a Micro-Aerial Vehicle
 Shaojie Shen, Nathan Michael, and Vijay Kumar

- Map a previously unknown building
- Find good exploration frontiers in partial map

73

Dr.Jürgen Sturm, Computer Vision Group, TUM

Decentralized Formation Control with

 Variable Shapes for Aerial RobotsMatthew Turpin, Nathan Michael, and Vijay Kumar

- Move in formation (e.g., to traverse a window)
- Avoid collisions
- Dynamic role switching

On-board Velocity Estimation and Closed-loop
Control of a Quadrotor UAV based on Optical Flow Volker Grabe, Heinrich H. Bülthoff, and Paolo Robuffo Giordano

- Ego-motion from optical flow using homography constraint
- Use for velocity control

Autonomous Landing of a VTOL UAV on a Moving Platform Using Image-based Visual Servoing Daewon Lee, Tyler Ryan and H. Jin. Kim

- Tracking and landing on a moving platform
- Switch between tracking and landing behavior

Visual Navigation for Flying Robots

Or. Jürgen Sturm, Computer Vision Group, TUM

Resonant Wireless Power Transfer to Ground Sensors from a UAV

Brent Griffin and Carrick Detweiler

- Quadrocopter transfers power to light a LED

Dr. Jürgen Sturm, Computer Vision Group, TUM

| Using Depth in Visual Simultaneous | |
| :--- | :--- | :--- |
| Localisation and Mapping | ICRA Papers |
| Sebastian A. Scherer, Daniel Dube and Andreas Zell | - Will put them in our paper repository |
| - Combine PTAM with Kinect | - Remember password (or ask by mail) |
| - Monocular SLAM: scale drift | - See course website |
| - Kinect: has small maximum range | |

Angular and linear velocities

- Linear velocity $\boldsymbol{v}=\left(v_{x}, v_{y}, v_{z}\right)^{\top} \in \mathbb{R}^{3}$
- Angular velocity $\boldsymbol{\omega}=\left(\omega_{x}, \omega_{y}, \omega_{z}\right)^{\top} \in \mathbb{R}^{3}$
- Now consider a 3D point $\mathrm{p} \in \mathbb{R}^{3}$ of a rigid body moving with twist $\boldsymbol{\xi}=\left(\boldsymbol{v}^{\top}, \boldsymbol{\omega}^{\top}\right)^{\top}$
- What is the velocity $\dot{\mathrm{p}}$ at point p ?

Angular and linear velocities

- Linear velocity $\boldsymbol{v}=\left(v_{x}, v_{y}, v_{z}\right)^{\top} \in \mathbb{R}^{3}$
- Angular velocity $\boldsymbol{\omega}=\left(\omega_{x}, \omega_{y}, \omega_{z}\right)^{\top} \in \mathbb{R}^{3}$
- Now consider a 3D point $\mathrm{p} \in \mathbb{R}^{3}$ of a rigid body moving with twist $\boldsymbol{\xi}=\left(\boldsymbol{v}^{\top}, \boldsymbol{\omega}^{\top}\right)^{\top}$
- What is the velocity $\dot{\mathbf{p}}$ at point p ?

$$
\begin{aligned}
\mathbf{p}(t) & =R(t) \mathbf{p}(0)+\mathbf{t}(t) \\
& =\exp \left([\boldsymbol{\omega}]_{\times} t\right) \mathbf{p}(0)+\boldsymbol{v} t \\
\Rightarrow \dot{\mathbf{p}}(t) & =\exp \left([\boldsymbol{\omega}]_{\times} t\right)[\boldsymbol{\omega}]_{\times} \mathbf{p}(0)+\boldsymbol{v} \\
\dot{\mathbf{p}}(0) & =[\boldsymbol{\omega}]_{\times} \mathbf{p}(0)+\boldsymbol{v}
\end{aligned}
$$

D.Jurgen Sturm, Computer Vision Group, TUM

Angular and linear velocities

- Linear velocity $\boldsymbol{v}=\left(v_{x}, v_{y}, v_{z}\right)^{\top} \in \mathbb{R}^{3}$
- Angular velocity $\boldsymbol{\omega}=\left(\omega_{x}, \omega_{y}, \omega_{z}\right)^{\top} \in \mathbb{R}^{3}$
- Now consider a 3D point $\mathrm{p} \in \mathbb{R}^{3}$ of a rigid body moving with twist $\boldsymbol{\xi}=\left(\boldsymbol{v}^{\top}, \boldsymbol{\omega}^{\top}\right)^{\top}$
- What is the velocity $\dot{\mathrm{p}}$ at point p ?

$$
\begin{aligned}
\mathbf{p}(t) & =R(t) \mathbf{p}(0)+\mathbf{t}(t) \\
& =\exp \left([\boldsymbol{\omega}]_{\times} t\right) \mathbf{p}(0)+\boldsymbol{v} t
\end{aligned}
$$

Dr. Jürgen Sturm, Computer Vision Group, TUM

Recap: Perspective Projection

3D to 2D Perspective Projection

- 3D point p (in the camera frame)
- 2D point x (on the image plane)
- Pin-hole camera model

$$
\tilde{\mathbf{x}}=\lambda \overline{\mathrm{x}}=\mathbf{p}
$$

- Remember, \tilde{x} is homogeneous, need to normalize

$$
\tilde{\mathbf{x}}=\left(\begin{array}{c}
\tilde{x} \\
\tilde{y} \\
\tilde{z}
\end{array}\right) \quad \Rightarrow \quad \mathbf{x}=\binom{\tilde{x} / \tilde{z}}{\tilde{y} / \tilde{z}}
$$

Camera Intrinsics

- So far, 2D point is given in meters on image plane
- But: we want 2D point be measured in pixels (as the sensor does)

Image Plane

- Pixel coordinates $\mathrm{x} \in \Omega$
- Image plane $\Omega \subset \mathbb{R}^{2}$
- Example:
- Discrete case $\mathbf{x} \in[0, W) \times[0, H) \subset \mathbb{N}_{0}^{2}$ (default in this course)
- Continuous case $\mathbf{x} \in[0,1] \times[0,1] \subset \mathbb{R}^{2}$

Image Functions

- Realistically, the image function is only defined on a rectangle and has finite range

$$
f:[0, W-1] \times[0, H-1] \mapsto[0,1]
$$

- Image can be represented as a matrix
- Alternative notations

Image Functions

- We can think of an image as a function $f: \Omega \mapsto \mathbb{R}$
- $f(\mathrm{x})$ gives the intensity at position \mathbf{x}
- Color images are vector-valued functions

$$
f(\mathbf{x})=\left(\begin{array}{l}
r(\mathbf{x}) \\
g(\mathbf{x}) \\
b(\mathbf{x})
\end{array}\right)
$$

- Focal length f_{x}, f_{y}
- Camera center c_{x}, c_{y}
- Skew s

$$
\tilde{\mathbf{x}}=\underbrace{\left(\begin{array}{ccc}
f_{x} & s & c_{x} \\
0 & f_{y} & c_{y} \\
0 & 0 & 1
\end{array}\right)}_{\text {intrinsics } K} \underbrace{\left(\begin{array}{cccc}
1 & 0 & 0 & 0 \\
0 & 1 & 0 & 0 \\
0 & 0 & 1 & 0
\end{array}\right)}_{\text {projection }} \tilde{\mathbf{p}}
$$

- Need to apply some scaling/offset

Digital Images

- Light intensity is sampled by CCD/CMOS sensor on a regular grid
- Electric charge of each cell is quantized and gamma compressed (for historical reasons)

$$
V=B^{\frac{1}{\gamma}} \text { with } \gamma=2.2
$$

- CRTs / monitors do the inverse $B=V^{\gamma}$
- Almost all images are gamma compressed
\rightarrow Double brightness results only in a 37\% higher intensity value (!)
Visual Navigation for Flying Robots
19
Dr. Jürgen Sturm, Computer Vision Group, TUM

Rolling Shutter

- Most CMOS sensors have a rolling shutter
- Rows are read out sequentially
- Sensitive to camera and object motion
- Can we correct for this?

Visual Navigation for Flying Robots 21

Linear Filtering

- Each output is a linear combination of all the input values

$$
g(i, j)=\sum_{k, l} h(i, j, k, l) f(k, l)
$$

- In matrix form

Image Gradient

- The image gradient $\nabla f=\left(\frac{\partial f}{\partial x} \frac{\partial f}{\partial y}\right)^{\top}$ points in the direction of increasing intensity (steepest ascend)

$$
\nabla f=\left(\frac{\partial f}{\partial x}, 0\right)^{\top}
$$

$$
\nabla f=\left(0, \frac{\partial f}{\partial y}\right)^{\top}
$$

$$
\nabla f=\left(\frac{\partial f}{\partial x}, \frac{\partial f}{\partial y}\right)^{\top}
$$

Image Gradient

- Gradient direction (related to edge orientation)

$$
\theta=\operatorname{atan} 2\left(\frac{\partial f}{\partial y}, \frac{\partial f}{\partial x}\right)
$$

- Gradient magnitude (edge strength)

$$
\|\nabla f\|=\sqrt{\left(\frac{\partial f}{\partial x}\right)^{2}+\left(\frac{\partial f}{\partial y}\right)^{2}}
$$

$$
38
$$

Image Gradient

How can we differentiate a digital image $f(x, y)$?

- Option 1: Reconstruct a continuous image, then take gradient
- Option 2: Take discrete derivative (finite difference filter)
- Option 3: Convolve with derived Gaussian (derivative filter)

Finite difference

- First-order central difference

$$
\frac{\partial f}{\partial x}(x, y) \approx \frac{f(x+1, y)-f(x-1, y)}{2}
$$

- Corresponding convolution kernel: \qquad

Visual Navigation for Flying Robots
40
Dr. Jürgen Sturm, Computer Vision Group, TUM

Second-order Derivative

- Differentiate again to get second-order central difference

$$
\frac{\partial f(x)}{\partial x^{2}} \approx f(x+1)-2 f(x)+f(x-1)
$$

Corresponding convolution kernel: \qquad

Example $g(i, j)=f * h=\sum_{k, l} h(i-k, j-l) f(k, l)$	Example $g(i, j)=f * h=\sum_{k, l} h(i-k, j-l) f(k, l)$
$f(i, j) \quad g(i, j)$	$f(i, j) \quad g(i, j)$
(Dense) Motion Estimation	Problem Statement
- 2D motion	- Given: two camera images f_{0}, f_{1} - Goal: estimate the camera motion u
- 3D motion	
	- For the moment, let's assume that the camera only moves in the xy-plane, i.e., $\mathbf{u}=(u v)^{\top}$ - Extension to 3D follows
General Idea 1. Define an error metric $E(\mathbf{u})$ that defines how well the two images match given a motion vector	Error Metrics for Image Comparison
	- Sum of Squared Differences (SSD)
	$E_{\text {SSD }}(\mathbf{u})=\sum\left(f_{1}\left(\mathbf{x}_{i}+\mathbf{u}\right)-f_{0}\left(\mathbf{x}_{i}\right)\right)^{2}=\sum e_{i}^{2}$
2. Find the motion vector with the lowest error $\mathbf{u}^{*}=\arg \min _{\mathbf{u}} E(\mathbf{u})$	with displacement $\mathbf{u}=(u v)^{\top}$ and residual errors $e_{i}=f_{1}\left(\mathbf{x}_{i}+\mathbf{u}\right)-f_{0}\left(\mathbf{x}_{i}\right)$
momb	

Robust Error Metrics

- SSD metric is sensitive to outliers
- Solution: apply a (more) robust error metric

$$
E_{\mathrm{SRD}}(\mathbf{u})=\sum_{i} \rho\left(f_{1}\left(\mathbf{x}_{i}+\mathbf{u}\right)-f_{0}\left(\mathbf{x}_{i}\right)\right)=\sum_{i} \rho\left(e_{i}\right)
$$

Robust Error Metrics

Visual Navigation for Flying Robots
51

Robust Error Metrics

- Sum of Absolute Differences

$$
\rho_{\mathrm{SAD}}(e)=|e|
$$

- Sum of truncated errors

$$
\rho_{\text {trunc }}(e)= \begin{cases}e^{2} & \text { if }|e|<b \\ b^{2} & \text { otherwise }\end{cases}
$$

- Geman-McClure function (Huber norm)

$$
\rho_{\text {luber }}(e)=\frac{e^{2}}{1+e^{2} / b^{2}}
$$

Visual Navigation for Flying Robots 50

Windowed SSD

- Images (and image patches) have finite size
- Standard SSD has a bias towards smaller overlaps (less error terms)
- Solution: divide by the overlap area
- Root mean square error

$$
E_{\mathrm{RMS}}(\mathbf{u})=\sqrt{E_{\mathrm{SSD}} / A}
$$

Exposure Differences

- Images might be taken with different exposure (auto shutter, white balance, ...)
- Bias and gain model

$$
f_{1}(\mathbf{x}+\mathbf{u})=(1+\alpha) f_{0}(\mathbf{x})+\beta
$$

- With SSD we get

$$
\begin{aligned}
E_{\mathrm{BG}}(\mathbf{u}) & =\sum_{i}\left(f_{1}\left(\mathbf{x}_{i}+\mathbf{u}\right)-(1+\alpha) f_{0}\left(\mathbf{x}_{i}\right)+\beta\right)^{2} \\
& =\sum_{i} \alpha f_{0}(\mathbf{x})+\beta-e_{i}^{2}
\end{aligned}
$$

Cross-Correlation

- Maximize the product (instead of minimizing the differences)

$$
E_{\mathrm{CC}}(\mathbf{u})=-\sum_{i} f_{0}\left(\mathbf{x}_{i}\right) f_{1}\left(\mathbf{x}_{i}+\mathbf{u}\right)
$$

- Normalized cross-correlation (between -1..1)
$E_{\mathrm{NCC}}(\mathbf{u})=$

$$
-\sum_{i} \frac{\left(f_{0}\left(\mathbf{x}_{i}\right)-\operatorname{mean} f_{0}\right)\left(f_{1}\left(\mathbf{x}_{i}+\mathbf{u}\right)-\operatorname{mean} f_{1}\right)}{\sqrt{\operatorname{var} f_{0} \operatorname{var} f_{1}}}
$$

General Idea

1. Define an error metric $E(\mathbf{u})$ that defines how well the two images match given a motion vector
2. Find the motion vector with the lowest error

$$
\mathbf{u}^{*}=\arg \min _{\mathbf{u}} E(\mathbf{u})
$$

Visual Navigation for Flying Robots
55
Dr. Jürgen Sturm, Computer Vision Group, TUM

Hierarchical motion estimation

- Construct image pyramid

$$
f_{k}^{(l+1)}\left(\mathbf{x}_{i}\right) \leftarrow f_{k}^{(l)}\left(2 \mathbf{x}_{i}\right)
$$

- Estimate motion on coarse level
- Use as initialization for next finer level

$$
\hat{\mathbf{u}}^{(l-1)} \leftarrow 2 \mathbf{u}^{(l)}
$$

Visual Navigation for Flying Robots
57 \qquad

Least Squares Problem

- Goal: Minimize

$$
E(\mathbf{u}+\Delta \mathbf{u})=\sum_{i}\left(J_{1}\left(\mathbf{x}_{i}+\mathbf{u}\right) \Delta \mathbf{u}+e_{i}\right)^{2}
$$

- Solution: Compute derivative (and set to zero)

$$
\frac{\partial E(\mathbf{u}+\Delta \mathbf{u})}{\partial \Delta \mathbf{u}}=2 A \Delta \mathbf{u}+2 \mathbf{b}
$$

with $A=\sum_{i} J_{1}^{\top}\left(\mathbf{x}_{i}+\mathbf{u}\right) J_{1}(\mathbf{x}+\mathbf{u})$
and $\mathbf{b}=\sum_{i} e_{i} J_{1}^{\top}\left(\mathbf{x}_{i}+\mathbf{u}\right)$
Dr. Jürgen Sturm, Computer Vision Group, TUM

Finding the minimum

- Full search (e.g., ± 16 pixels)
- Gradient descent
- Hierarchical motion estimation

Gradient Descent

- Perform gradient descent on the SSD energy function (Lucas and Kanade, 1981)
- Taylor expansion of energy function

$$
\begin{aligned}
& \qquad \begin{array}{l}
E_{\mathrm{LK}-\mathrm{SSD}}(\mathbf{u}+\Delta \mathbf{u})=\sum_{i}\left(f_{1}\left(\mathbf{x}_{i}+\mathbf{u}+\Delta \mathbf{u}\right)-f_{0}\left(\mathbf{x}_{i}\right)\right)^{2} \\
\qquad \quad \approx \sum_{i}\left(f_{1}\left(\mathbf{x}_{i}+\mathbf{u}\right)+J_{1}(\mathbf{x}+\mathbf{u}) \Delta \mathbf{u}-f_{0}\left(\mathbf{x}_{i}\right)\right)^{2} \\
\quad=\sum_{i}\left(J_{1}(\mathbf{x}+\mathbf{u}) \Delta \mathbf{u}+e_{i}\right)^{2} \\
\text { with } J_{1}\left(\mathbf{x}_{i}+\mathbf{u}\right)=\nabla f_{1}\left(\mathbf{x}_{i}+\mathbf{u}\right)=\left(\frac{\partial f_{1}}{\partial x}, \frac{\partial f_{1}}{\partial y}\right)\left(\mathbf{x}_{i}+\mathbf{u}\right)
\end{array}
\end{aligned}
$$

Least Squares Problem

1. Compute A, b from image gradients using

$$
\begin{aligned}
& A=\left(\begin{array}{ll}
\sum f_{x}^{2} & \sum f_{x} f_{y} \\
\sum f_{x} f_{y} & \sum f_{y}^{2}
\end{array}\right) \quad \mathbf{b}=\binom{\sum f_{x} f_{t}}{\sum f_{y} f_{t}} \\
& \text { with } f_{x}=\frac{\partial f_{1}(\mathbf{x})}{\partial x}, f_{y}=\frac{\partial f_{1}(\mathbf{x})}{\partial y} \\
& \text { and } f_{t}=\frac{\partial f_{t}(\mathbf{x})}{\partial t}\left[\approx f_{1}(\mathbf{x})-f_{0}(\mathbf{x})\right]
\end{aligned}
$$

2. Solve $A \Delta \mathbf{u}=-\mathbf{b}$

$$
\Rightarrow \quad \Delta \mathbf{u}=-A^{-1} \mathbf{b}
$$

Covariance of the Estimated Motion

- Assuming (small) Gaussian noise in the images

$$
f_{\text {obs }}\left(\mathbf{x}_{i}\right)=f_{\text {true }}\left(\mathbf{x}_{i}\right)+\epsilon_{i}
$$

with $\epsilon_{i} \sim \mathcal{N}\left(0, \sigma^{2}\right)$

- ... results in uncertainty in the motion estimate with covariance (e.g., useful for Kalman filter)

$$
\Sigma_{u}=\sigma^{2} A^{-1}
$$

Visual Navigation for Flying Robots
61
Dr. Jürgen Sturm, Computer Vision Group, TUM

Image Patches

- Sometimes we are interested of the motion of a small image patches
- Problem: some patches are easier to track than others
- What patches are easy/difficult to track?
- How can we recognize "good" patches?

Example

- Let's look at the shape of the energy functional

Corner Detection

$$
A=\left(\begin{array}{cc}
\sum f_{x}^{2} & \sum f_{x} f_{y} \\
\sum f_{x} f_{y} & \sum f_{y}^{2}
\end{array}\right)
$$

- Idea: Inspect eigenvalues λ_{1}, λ_{2} of Hessian A
- λ_{1}, λ_{2} small \rightarrow no point of interest
- λ_{1} large, λ_{2} small \rightarrow edge
- λ_{1}, λ_{2} large \rightarrow corner
- Harris detector (does not need eigenvalues)

$$
\lambda_{1} \lambda_{2}>\kappa\left(\lambda_{1}+\lambda_{2}\right)^{2} \Leftrightarrow \operatorname{det}(A)>\kappa \operatorname{trace}^{2}(A)
$$

- Shi-Tomasi (or Kanade-Lucas) $\min \left(\lambda_{1}, \lambda_{2}\right)>\kappa$

Visual Navigation for Flying Robots
Dr. Jürgen Sturm, Computer Vision Group, TUM

Corner Detection

1. For all pixels, computer corner strength
2. Non-maximal suppression
(E.g., sort by strength, strong corner suppresses weaker corners in circle of radius r)

strongest responses

non-maximal suppression

Other Detectors

- Förstner detector (localize corner with subpixel accuracy)
- FAST corners (learn decision tree, minimize number of tests \rightarrow super fast)
- Difference of Gaussians / DoG (scale-invariant detector)
- ...

Example

- Dense optical flow methods require GPU

3D Motion Estimation

(How) Can we recover the camera motion from the estimated flow field?

- Research paper: Grabe et al., ICRA 2012
http://www9.in.tum.de/~sturmju/dirs/icra2012/data/papers/2025.pdf

Approach [Grabe et al., ICRA'12]

- Compute optical flow
- Estimate homography between images
- Extract angular and (scaled) linear velocity
- Additionally employ information from IMU

Assumptions

1. The quadrocopter moves slowly relative to the sampling rate
\rightarrow limited search radius

2. The environment is planar with normal N \rightarrow image transformation is a homography

Visual Navigation for Flying Robots

Dr Jürgen Sturm, Computer Vision Group. TUM

Continuous Homography Matrix

- Assumption: All feature points are located on a plane

$$
N^{\top} \mathbf{p}=d
$$

with plane normal $N \in \mathbb{R}^{3}$ and distance $d \in \mathbb{R}$

for Flying Robots

Continuous Homography Constraint

- The camera observes point $\mathrm{p} \in \mathbb{R}^{3}$ at pixel $\mathrm{x} \in \mathbb{R}^{2}$ (assuming $K=I$ for simplicity)

$$
\tilde{\mathbf{x}}=\lambda \overline{\mathbf{x}}=\mathbf{p}
$$

- The KLT tracker estimates the motion u of the feature track in the image
- Constraint:

Continuous Homography Constraint

- Combining these formulas gives us

$$
\begin{aligned}
\dot{\lambda} \overline{\mathbf{x}}+\lambda \overline{\mathbf{u}} & =H \mathbf{p} \\
\lambda \overline{\mathbf{u}} & =H \mathbf{p}-\dot{\lambda} \overline{\mathbf{x}} \\
\overline{\mathbf{u}} & =H \overline{\mathbf{x}}-\frac{\dot{\lambda}}{\lambda} \overline{\mathbf{x}}
\end{aligned}
$$

- Multiply both sides with $[\overline{\mathrm{x}}]_{\times}$gives us

$$
\begin{aligned}
& {[\overline{\mathrm{x}}]_{\times} \overline{\mathbf{u}}=[\overline{\mathrm{x}}]_{\times} H \overline{\mathrm{x}}-\underbrace{[\overline{\mathrm{x}}]_{\times} \frac{\dot{\lambda}}{\lambda} \overline{\mathrm{x}}}_{=0}} \\
& \Rightarrow[\overline{\mathbf{x}}]_{\times} \overline{\mathbf{u}}=[\overline{\mathbf{x}}]_{\times} H \overline{\mathbf{x}}
\end{aligned}
$$

Approach

- Result: For all observed motions in the image, the continuous homography constraint holds

$$
[\overline{\mathbf{x}}]_{\times} \overline{\mathbf{u}}=[\overline{\mathbf{x}}]_{\times} H \overline{\mathbf{x}}
$$

- How can we use this to estimate the camera motion?

1. Estimate H from at least 4 feature tracks
2. Recover $(\boldsymbol{v}, \boldsymbol{\omega})$ and (N, d) from H

Remember: $\quad H=[\boldsymbol{\omega}]_{\times}+\boldsymbol{v} \frac{1}{d} N^{\top}$

Step 1: Estimate H

- Linear set of equations

$$
\underbrace{\left(\begin{array}{c}
M_{1}^{\top} \\
M_{2}^{\top} \\
\vdots
\end{array}\right)}_{A} \mathbf{h}=\underbrace{\left(\begin{array}{c}
{[\overline{\mathbf{x}}]_{\times} \overline{\mathbf{u}}_{1}^{\top}} \\
\overline{\mathbf{x}}]_{\times} \mathbf{\overline { u }}_{2}^{\top} \\
\vdots
\end{array}\right)}_{\mathbf{b}}
$$

- Solve for h using least squares

$$
\begin{aligned}
A \mathbf{h} & =\mathbf{b} \\
\Rightarrow \mathbf{h} & =\left(A^{\top} A\right)^{-1} A^{\top} \mathbf{b}
\end{aligned}
$$

Step 2: Recover camera motion

Grabe et al. investigated three alternatives:

1. Recover $\left(\boldsymbol{\omega}, \frac{v}{d}, N\right)$ from $H=[\boldsymbol{\omega}]_{\times}+\boldsymbol{v} \frac{1}{d} N^{\top}$ using the 8-point algorithm (not yet explained)
2. Use angular velocity ω from IMU to de-rotate observed feature tracks beforehand, then:

$$
H=\boldsymbol{v} \frac{1}{d} N^{\top}
$$

3. Additionally use gravity vector from IMU as plane normal $N=N_{\text {IMU }}$, then

$$
\frac{v}{d}=H\left(N^{\top} N\right)^{-1}
$$

Evaluation

- Comparison of estimated velocities with ground truth from motion capture system

Algorithm	Norm error	Std. deviation
Pure vision	$0.134 \frac{\mathrm{~m}}{\mathrm{~s}}$	$0.094 \frac{\mathrm{~m}}{s}$
Ang. vel. known	$0.117 \frac{\mathrm{~m}}{3}$	$0.093 \frac{\mathrm{~m}}{s}$
Normal known	$0.113 \frac{\mathrm{~m}}{s}$	$0.088 \frac{\mathrm{~m}}{s}$

- Comparison of actual velocity with desired velocity (closed-loop control)

Algorithm	Norm error	Std. deviation
Pure vision	$0.084 \frac{\mathrm{~m}}{\pi}$	$0.139 \frac{\mathrm{~m}}{s}$
Ang. vel. known	$0.039 \frac{\mathrm{~m}}{s}$	$0.042 \frac{\mathrm{~m}}{s}$
Normal known	$0.028 \frac{\mathrm{~m}}{s}$	$0.031 \frac{\mathrm{~m}}{s}$

Landing on a Moving Platform

- Similar approach, but with offboard computation

Lessons Learned Today

- How to estimate the translational motion from camera images
- Which image patches are easier to track than others
- How to estimate 3D motion from multiple feature tracks (and IMU data)

Visual Velocity Control

- All computations are carried out on-board (18fps)

[Grabe et al., ICRA '12]
\qquad

Commercial Solutions

- Helicommand 3D from Robbe 2(?) cameras, IMU, air pressure sensor, 450 EUR
- Parrot Mainboard + Navigation board

1 camera, IMU, ultrasound sensor, 210 USD

A Few Ideas for Your Mini-Project

- Person following (colored shirt or wearing a marker)
- Flying camera for taking group pictures (possibly using the OpenCV face detector)
- Fly through a hula hoop (brightly colored, white background)
- Navigate through a door (brightly colored)
- Navigate from one room to another (using ground markers)
- Avoid obstacles using optical flow
- Landing on a moving platform
- Your own idea here - be creative!
- ...

Joggobot

- Follows a person wearing a visual marker

[http://exertiongameslab.org/projects/joggobot]

SLAM with Ceiling Camera (Samsung Hauzen RE70V, 2008)	SLAM with Laser + Line camera (Neato XV 11, 2010)
Localization, Path planning, Coverage (Neato XV11, \$300)	SLAM vs. SfM - In Robotics: Simultaneous Localization and Mapping (SLAM) - Laser scanner, ultrasound, monocular/stereo camera - Typically in combination with an odometry sensor - Typically pre-calibrated sensors - In Computer Vision: Structure from Motion (SfM), sometimes: Structure and Motion - Monocular/stereo camera - Sometimes uncalibrated sensors (e.g., Flick images)
Agenda for Today - This week: focus on monocular vision - Feature detection, descriptors and matching - Epipolar geometry - Robust estimation (RANSAC) - Examples (PTAM, Photo Tourism) - Next week: focus on optimization (bundle adjustment), stereo cameras, Kinect - In two weeks: map representations, mapping and (dense) 3D reconstruction	How Do We Build a Panorama Map? - We need to match (align) images - Global methods sensitive to occlusion, lighting, parallax effects - How would you do it by eye?

Matching with Features - Detect features in both images	Matching with Features - Detect features in both images - Find corresponding pairs
Matching with Features - Detect features in both images - Find corresponding pairs - Use these pairs to align images	Matching with Features - Problem 1: We need to detect the same point independently in both images no chance to match! \rightarrow We need a reliable detector \qquad
Matching with Features - Problem 2: For each point correctly recognize the corresponding one \rightarrow We need a reliable and distinctive descriptor	Ideal Feature Detector - Always finds the same point on an object, regardless of changes to the image - Insensitive (invariant) to changes in: - Scale - Lightning - Perspective imaging - Partial occlusion

Harris Detector - Rotation invariance?	Harris Detector - Rotation invariance? - Remember from last week $A=\left(\begin{array}{cc} \sum f_{x}^{2} & \sum f_{x} f_{y} \\ \sum f_{x} f_{y} & \sum f_{y}^{2} \end{array}\right) \quad R=\lambda_{1} \lambda_{2}-\kappa\left(\lambda_{1}+\lambda_{2}\right)^{2}$
Harris Detector - Rotation invariance - Remember from last week $A=\left(\begin{array}{cc} \sum f_{x}^{2} & \sum f_{x} f_{y} \\ \sum f_{x} f_{y} & \sum f_{y}^{2} \end{array}\right) \quad R=\lambda_{1} \lambda_{2}-\kappa\left(\lambda_{1}+\lambda_{2}\right)^{2}$ - Ellipse rotates but its shape (i.e. eigenvalues) remains the same \rightarrow Corner response R is invariant to rotation	Harris Detector - Invariance to intensity change?
Harris Detector - Partial invariance to additive and multiplicative intensity changes - Only derivatives are used \rightarrow invariance to intensity shift $I \rightarrow I+b$ - Intensity scale $I \rightarrow a I$: Because of fixed intensity threshold on local maxima, only partial invariance	Harris Detector - Invariant to scaling?

Harris Detector - Not invariant to image scale All points classified as edge Point classified as corner	Difference Of Gaussians (DoG) - Alternative corner detector that is additionally invariant to scale change - Approach: - Run linear filter (diff. of two Gaussians, $\sigma_{1}=2 \sigma_{2}$) - Do this at different scales - Search for a maximum both in space and scale
Example: Difference of Gaussians	SIFT Detector - Search for local maximum in space and scale - Corner detections are invariant to scale change
SIFT Detector 1. Detect maxima in scale-space 2. Non-maximum suppression 3. Eliminate edge points (check ratio of eigenvalues) 4. For each maximum, fit quadratic function and compute center at sub-pixel accuracy	Example 1. Input image 233×189 pixel 2. 832 candidates DoG minima/maxima (visualization indicate scale, orient., location) 3. 536 keypoints remain after thresholding on minimum contrast and principal curvature

Feature Matching

- Now, we know how to find repeatable corners
- Next question: How can we match them?

Template Convolution

Invariances

- Scaling: No
- Rotation: No (maybe rotate template?)
- Illumination: No (use bias/gain model?)
- Perspective projection: Not really

Scale Invariant Feature Transform (SIFT)

Approach

1. Find SIFT corners (position + scale)
2. Find dominant orientation and de-rotate patch
3. Extract SIFT descriptor (histograms over gradient directions)

Template Convolution

- Extract a small as a template

- Convolve image with this template

Visual Navigation for Flying Robots
32
D. Jïren Sturm, Computer Vision Group, TUM

Scale Invariant Feature Transform (SIFT)

- Lowe, 2004: Transform patches into a canonical form that is invariant to translation, rotation, scale, and other imaging parameters

Navigation for Flying Robots \qquad

Select Dominant Orientation

- Create a histogram of local gradient directions computed at selected scale (36 bins)
- Assign canonical orientation at peak of smoothed histogram
- Each key now specifies stable 2D coordinates (x, y, scale, orientation)

SIFT Descriptor

- Compute image gradients over 16×16 window (green), weight with Gaussian kernel (blue)
- Create 4×4 arrays of orientation histograms, each consisting of 8 bins
- In total, SIFT descriptor has 128 dimensions

Visual Navigation for Flying Robots
ots

Feature Distance

How to define the difference between features?

- Simple approach is Euclidean distance (or SSD)

$$
\mathrm{d}\left(\mathbf{d}_{1}, \mathbf{d}_{2}\right)=\left\|\mathbf{d}_{1}-\mathrm{d}_{2}\right\|
$$

Feature Distance

How to define the difference between features?

- Better approach $\mathrm{d}\left(\mathbf{d}_{1}, \mathrm{~d}_{2}\right)=\left\|\mathrm{d}_{1}-\mathrm{d}_{2}\right\| /\left\|\mathrm{d}_{1}-\mathrm{d}_{2}^{\prime}\right\|$ with d_{2} best matching feature from I_{2} d_{2}^{\prime} second best matching feature from I_{2}
- Gives small values for ambiguous matches

Feature Matching

Given features in I_{1}, how to find best match in I_{2} ?

- Define distance function that compares two features
- Test all the features in I_{2}, find the one with the minimal distance

Feature Distance

How to define the difference between features?

- Simple approach is Euclidean distance (or SSD)

$$
\mathrm{d}\left(\mathbf{d}_{1}, \mathbf{d}_{2}\right)=\left\|\mathbf{d}_{1}-\mathrm{d}_{2}\right\|
$$

- Problem: can give good scores to ambiguous (bad) matches

Vsual Navigation for Flying Robots

Efficient Matching

For feature matching, we need to answer a large number of nearest neighbor queries

- Exhaustive search $\mathrm{O}\left(n^{2}\right)$

Visual Navigation for Flying Robots

Efficient Matching

For feature matching, we need to answer a large number of nearest neighbor queries

- Exhaustive search $\mathrm{O}\left(n^{2}\right)$
- Indexing (k-d tree)

Dr. Jürgen Sturm, Computer Vision Group, TUM

Efficient Matching

For feature matching, we need to answer a large number of nearest neighbor queries

- Exhaustive search $\mathrm{O}\left(n^{2}\right)$
- Indexing (k-d tree)
- Localize query in tree
- Search nearby leaves until nearest neighbor is guaranteed found

Rell Navigetion for flyin Robots 44

Efficient Matching

For feature matching, we need to answer a large number of nearest neighbor queries

- Exhaustive search $\mathrm{O}\left(n^{2}\right)$
- Indexing (k-d tree)
- Localize query in tree
- Search nearby leaves until nearest neighbor is guaranteed found

sual Navigation for Flying Robots

Efficient Matching

For feature matching, we need to answer a large number of nearest neighbor queries

- Exhaustive search $\mathrm{O}\left(n^{2}\right)$
- Indexing (k-d tree)
- Localize query in tree
- Search nearby leaves until nearest neighbor is guaranteed found
- Best-bin-first: use priority queue for unchecked leafs

Efficient Matching

For feature matching, we need to answer a large number of nearest neighbor queries

- Exhaustive search $\mathrm{O}\left(n^{2}\right)$
- Indexing (k-d tree)
- Approximate search
- Locality sensitive hashing
- Approximate nearest neighbor

Efficient Matching

For feature matching, we need to answer a large number of nearest neighbor queries

- Exhaustive search $\mathrm{O}\left(n^{2}\right)$
- Indexing (k-d tree)
- Approximate search
- Locality sensitive hashing
- Approximate nearest neighbor

Efficient Matching

For feature matching, we need to answer a large number of nearest neighbor queries

- Exhaustive search $\mathrm{O}\left(n^{2}\right)$
- Indexing (k-d tree)
- Approximate search
- Vocabulary trees

Example: RGB-D SLAM

[Engelhard et al., 2011; Endres et al. 2012]

- Feature descriptor: SURF
- Feature matching: FLANN (approximate nearest neighbor)
[Bay et al., 2008]
- BRIEF (Binary robust independent elementary features)
[Calonder et al., 2010]
- ORB (Oriented FAST and Rotated Brief) [Rublee et al, 2011]
- ...

Isual Navigation for Flying Robots

Structure From Motion (SfM)

- Now we can compute point correspondences
- What can we use them for?

Four Important SfM Problems

- Camera calibration

Known 3D points, observe corresponding 2D points, compute camera pose

- Point triangulation

Known camera poses, observe 2D point correspondences, compute 3D point

- Motion estimation (epipolar geometry)

Observe 2D point correspondences, compute camera pose (up to scale)

- Bundle adjustment (next week!)

Observe 2D point correspondences, compute camera pose and 3D points (up to scale)

Camera Calibration

- Given: n 2D/3D correspondences $\mathbf{x}_{i} \leftrightarrow \mathbf{p}_{i}$
- Wanted: $\quad M=K\left(\begin{array}{ll}R & \mathbf{t}\end{array}\right)$
such that $\quad \tilde{\mathbf{x}}_{i}=M \mathbf{p}_{i}$
- The algorithm has two parts:

1. Compute $M \in \mathbb{R}^{3 \times 4}$
2. Decompose M into K, R, \mathbf{t} via QR decomposition

Step 1: Estimate M

- Re-arranged in matrix form
$\left(\begin{array}{cccccccccccc}X & Y & Z & 1 & 0 & 0 & 0 & 0 & -x X & -x Y & -x Z & -x \\ 0 & 0 & 0 & 0 & X & Y & Z & 1 & -y X & -y Y & -y Z & -y\end{array}\right) \mathrm{m}=\mathbf{0}$
with $\mathbf{m}=\left(\begin{array}{llll}m_{11} & m_{12} & \ldots & m_{34}\end{array}\right) \in \mathbb{R}^{12}$
- Concatenate equations for $\mathrm{n} \geq 6$ correspondences

$$
A \mathbf{m}=0
$$

- Wanted vectorm is in the null space of A
- Initial solution using SVD (vector with least singular value), refine using non-linear min.

Example: ARToolkit Markers (1999)

1. Threshold image
2. Detect edges and fit lines
3. Intersect lines to obtain corners
4. Estimate projection matrix M
5. Extract camera pose R,t (assume K is known)

The final error between measured and projected points is typically less than 0.02 pixels

Visual Navigation for Flying Robots 59

Step 1: Estimate M

- $\tilde{\mathbf{x}}_{i}=M \mathbf{p}_{i}$
- Each correspondence generates two equations

$$
x=\frac{m_{11} X+m_{12} Y+m_{13} Z+m_{14} W}{m_{31} X+m_{32} Y+m_{33} Z+m_{34} W} \quad y=\frac{m_{21} X+m_{22} Y+m_{23} Z+m_{24} W}{m_{31} X+m_{32} Y+m_{33} Z+m_{34} W}
$$

- Multiplying out gives equations linear in the elements of M
$\left(m_{31} X+m_{32} Y+m_{33} Z+m_{34} W\right) x=m_{11} X+m_{12} Y+m_{13} Z+m_{14} W$
$\left(m_{31} X+m_{32} Y+m_{33} Z+m_{34} W\right) y_{j}=m_{21} X+m_{22} Y+m_{23} Z+m_{24} W$
- Re-arrange in matrix form...

Visual Navigation for Flying Robots 56

Step 2: Recover K,R,t

- Remember $\quad M=K\left(\begin{array}{ll}R & \mathbf{t}\end{array}\right)$
- The first 3×3 submatrix is the product of an upper triangular and orthogonal (rot.) matrix

$$
K=\left(\begin{array}{ccc}
f_{x} & s & c_{x} \\
0 & f_{y} & c_{y} \\
0 & 0 & 1
\end{array}\right)
$$

Procedure:

1. Factor M into $K R$ using QR decomposition
2. Compute translation as $\mathbf{t}=K^{-1}\left(p_{14}, p_{24}, p_{34}\right)^{\top}$
isual Navigation for Flying Robots
Dr. Jürgen Sturm, Computer Vision Group, TUM

Triangulation

- Given: cameras $\left\{M_{j}=K_{j}\left(R_{j} \mathbf{t}_{j}\right)\right\}$
point correspondence $\mathbf{x}_{0}, \mathbf{x}_{1}$
- Wanted: Corresponding 3D point p

Triangulation

- Where do we expect to see $\mathbf{p}=(X Y Z W)^{\top}$?

$$
\hat{x}=\frac{m_{11} X+m_{12} Y+m_{13} Z+m_{14} W}{m_{31} X+m_{32} Y+m_{33} Z+m_{34} W} \quad \hat{y}=\frac{m_{21} X+m_{22} Y+m_{23} Z+m_{24} W}{m_{31} X+m_{32} Y+m_{33} Z+m_{34} W}
$$

- Minimize the residuals (e.g., using least squares)

$$
\mathbf{p}^{*}=\arg \min _{\mathbf{p}} \sum_{j} d\left(\mathbf{x}_{j}, \hat{\mathbf{x}}_{j}\right)^{2}
$$

Epipolar Geometry

- The line connecting both camera centers is called the baseline

Visual Navigation for Flying Robots

Epipolar Geometry

- Left line in left camera frame $\mathbf{p}_{1}=d_{1} \hat{\mathbf{x}}_{1}$
- Right line in right camera frame $\mathbf{p}_{2}=d_{2} \hat{\mathbf{x}}_{2}$ where $\hat{\mathrm{x}}_{\mathrm{j}}=K^{-1} \overline{\mathrm{x}}_{j}$ are the (local) ray directions

Epipolar Geometry

- Consider two cameras that observe a 3D world point

Vsual Navigation for Flying Robots
62 Dr. Jürgen Sturm, Computer Vision Group, TUM

Epipolar Geometry

- Given the image of a point in one view, what can we say about its position in another?

- A point in one image "generates" a line in another image (called the epipolar line)
visual Navigation for Flying Robots $\quad 64 \quad$ Dr. Jürgen Sturm, Computer Vision Group, TUM

Epipolar Geometry

- Left line in right camera frame $\mathbf{p}_{1}^{\prime}=R d_{1} \hat{\mathbf{x}}_{1}+t$
- Right line in right camera frame $\mathbf{p}_{2}=d_{2} \hat{\mathbf{x}}_{2}$
where $\hat{\mathbf{x}}_{\mathrm{j}}=K^{-1} \overline{\mathrm{x}}_{j}$ are the (local) ray directions
- Intersection of both lines

$$
\begin{aligned}
d_{2} \hat{\mathbf{x}}_{2} & =R d_{1} \hat{\mathbf{x}}_{1}+\mathbf{t} & & \mid \mathbf{t}]_{\times} \\
d_{2}[\mathbf{t}]_{\times} \hat{\mathbf{x}}_{2} & =d_{1}[\mathbf{t}]_{\times} R \hat{\mathbf{x}}_{1}+[\mathbf{t}]_{\times} \mathbf{t}=0 & & \mid \hat{\mathbf{x}}_{2}^{\top} .
\end{aligned}
$$

$0=d_{2} \hat{\mathbf{x}}_{2}^{\top}\left[\begin{array}{l}\top \\ \times \hat{\mathbf{x}}_{2} \\ \end{array} d_{1} \hat{\mathbf{x}}_{2}^{\top}[\mathbf{t}]_{\times} R \hat{\mathbf{x}}_{1}\right.$
$0=\hat{\mathbf{x}}_{2}^{\top}[\mathbf{t}]_{\times} R \hat{\mathbf{x}}_{1}$ $0=\hat{\mathbf{x}}_{2}^{\top} E \hat{\mathbf{x}}_{1}$
this is called the epipolar constraint

Epipolar Geometry

Note: The epipolar constraint holds for every pair of corresponding points $\mathbf{x}_{1}, \mathbf{x}_{2}$

$$
\hat{\mathbf{x}}_{2}^{\top} E \hat{\mathbf{x}}_{1}=0
$$

where E is called the essential matrix

$$
E=[\mathbf{t}]_{\times} R \in \mathbb{R}^{3 \times 3}
$$

Step 1: Estimate E

- Each correspondence gives us one constraint

$$
\left.\begin{array}{c}
\mathbf{z}_{1}^{\top} \mathbf{e}=0 \\
\mathbf{z}_{2}^{\top} \mathbf{e}=0 \\
\vdots \\
\mathbf{z}_{n}^{\top} \mathbf{e}=0
\end{array}\right\} Z \mathbf{e}=\mathbf{0}
$$

- Linear system with n equations
- e is in the null-space of Z
- Solve using SVD (assuming $\|\mathrm{e}\|=1$)
$\left.\begin{array}{l}\mathbf{z}=\left(\begin{array}{llll}x_{1} x_{2} & y_{1} x_{2} & \ldots & 1\end{array}\right)^{\top} \\ \mathbf{e}=\left(\begin{array}{llll}e_{11} & e_{12} & \ldots & e_{33}\end{array}\right)^{\top}\end{array}\right\} \mathbf{z}^{\top} \mathbf{e}=0$
Visual Navigation for Flying Robots

Normalized 8-Point Algorithm

[Hartley 1997]

- Noise in the point observations is unequally distributed in the constraints, e.g.,
double noise $x_{1} x_{2} e_{11}+y_{1} x_{2} e_{12}+x_{2} e_{13}+$

- Estimation is sensitive to scaling
- Normalize all points to have zero mean and unit variance

Step 2: Recover R,t

- Note: The absolute distance between the two cameras can never be recovered from pure images measurements alone!!!
- Illustration

- We can only recover the translation $\hat{\mathbf{t}}$ up to scale

Step 2a: Recover t

- Remember: $E=[\mathrm{t}]_{\times} R$
- Therefore, \mathbf{t}^{\top} is in the null space of E

$$
\mathbf{t}^{\top} E=\underbrace{\mathbf{t}^{\top}[\mathbf{t}]_{\star}}_{=0} R=0
$$

\rightarrow Recover $\hat{\mathrm{t}}$ (up to scale) using SVD

$$
\begin{aligned}
E & =[\hat{\mathbf{t}}]_{\times} R=U \Sigma V^{\top} \\
& =\left(\begin{array}{lll}
\mathbf{u}_{0} & \mathbf{u}_{1} & \boxed{\hat{\mathbf{t}}}
\end{array}\right)\left(\begin{array}{lll}
1 & & \\
& 1 & \\
& & \boxed{0}
\end{array}\right)\left(\begin{array}{lll}
\mathbf{v}_{0}^{\top} & \mathbf{v}_{1}^{\top} & \mathbf{v}_{2}^{\top}
\end{array}\right)
\end{aligned}
$$

Step 2b: Recover R

- Plug this into the essential matrix equation

- By identifying $S=U$ and $Z=\Sigma$, we obtain

$$
\begin{aligned}
R_{90^{\circ}} U^{\top} R & =V^{\top} \\
R & =U R_{90^{\circ}}^{\top} V^{\top}
\end{aligned}
$$

Visual Navigation for Flying Robot
75
Dr. Jürgen Sturm, Computer Vision Group, TUM
How To Deal With Outliers?

Problem: No matter how good the feature descriptor/matcher is, there is always a chance for bad point correspondences (=outliers)

Robust Estimation

Example: Fit a line to 2D data containing outliers

There are two problems

1. Fit the line to the data $\arg \min _{l} \sum_{i} d_{i}^{2}$
2. Classify the data into inliers (valid points) and outliers (using some threshold)

RANdom SAmple Consensus (RANSAC)
 [Fischler and Bolles, 1981]

Goal: Robustly fit a model to a data set S which contains outliers
Algorithm:

1. Randomly select a (minimal) subset of data points and instantiate the model from it
2. Using this model, classify the all data points as inliers or outliers
3. Repeat $1 \& 2$ for N iterations
4. Select the largest inlier set, and re-estimate the model from all points in this set

RANdom SAmple Consensus (RANSAC)

- RANSAC is used very widely
- Many improvements/variants, e.g., MLESAC: $\underset{\text { varg }}{\arg \min _{l} \sum_{i} \rho\left(d_{i}\right) \text { with } \rho(d)=\left\{\begin{array}{l}d^{2} \quad \text { if } d \leq e(\text { inlier }) \\ e^{2} \\ \text { if } d>e(o u t l i e r)\end{array}\right]}$

How Many Samples?

- For probability p of having no outliers, we need to sample $N=\frac{\log (1-p)}{\log \left(1-(1-\epsilon)^{s}\right)}$ subsets
for subset size s and outlier ratio ϵ
- E.g., for $\mathrm{p}=0.95$:

Sample size	Proportion of outliers ϵ						
s	5%	10%	20%	25%	30%	40%	50%
2	2	2	3	4	5	7	11
3	2	3	5	6	8	13	23
4	2	3	6	8	11	22	47
5	3	4	8	12	17	38	95
6	3	4	10	16	24	63	191
7	3	5	13	21	35	106	382
8	3	6	17	29	51	177	766

PTAM (2007)

- Architecture optimized for dual cores

- Tracking thread runs in real-time (30Hz)
- Mapping thread is not real-time

Visual Navigation for Flying Robots \qquad

PTAM - Feature Tracking

- Generate 8×8 matching template (warped from key frame to current pose estimate)
- Search a fixed radius around projected position
- Using SSD
- Only search at FAST corner points

PTAM - Example Timings

- Tracking thread

Total	$\mathbf{1 9 . 2} \mathbf{~ m s}$
Key frame preparation	2.2 ms
Feature Projection	3.5 ms
Patch search	9.8 ms
Iterative pose update	3.7 ms

- Mapping thread

Key frames	$\mathbf{2 - 4 9}$	$\mathbf{5 0 - 9 9}$	$\mathbf{1 0 0 - 1 4 9}$
Local Bundle Adjustment	170 ms	270 ms	440 ms
Global Bundle Adjustment	380 ms	1.7 s	6.9 s

Photo Tourism (2006)

- Overview

Photo Tourism (2006)

PTAM - Mapping Thread

Visual Navigation for Flying Robots

PTAM Video

Parallel Tracking and Mapping for Small AR Workspaces

Extra video results made for ISMAR 2007 conference

Georg Klein and David Murray
Active Vision Laboratory
University of Oxford

Photo Tourism - Scene Reconstruction

- Processing pipeline

- Automatically estimate
- Position, orientation and focal length of all cameras
- 3D positions of point features

Photo Tourism - Input Images	Photo Tourism - Feature Detection
Photo Tourism - Feature Matching	Incremental Structure From Motion - To help get good initializations, start with two images only (compute pose, triangulate points) - Non-linear optimization - Iteratively add more images
Photo Tourism - Video Photo Tourism Exploring photo collections in 3D Noah Snavely Steven M. Seitz Richard Szeliski University of Washington Microsoft Research SIGGRAPH 2006	Lessons Learned Today - ... how to detect and match feature points - ... how to compute the camera pose and to triangulate points - ... how to deal with outliers

Vito
Computer vision Group
Prof Daniel cremeisizi
for Flying Robots
Bundle Adjustment
and Stereo Correspondence

Project Proposal Presentations

- This Thursday
- Don't forget to put title, team name, team members on first slide
- Pitch has to fit in 5 minutes (+5 minutes discussion)
- $9 \times(5+5)=90$ minutes
- Recommendation: use 3-5 slides

Dr. Jürgen Sturm

Agenda for Today

- Map optimization
- Graph SLAM
- Bundle adjustment
- Depth reconstruction
- Laser triangulation
- Structured light (Kinect)
- Stereo cameras

Remember: 3D Transformations

- Representation as a homogeneous matrix

$$
M=\left(\begin{array}{cc}
R & \mathbf{t} \\
\mathbf{0}^{\top} & 1
\end{array}\right) \in \mathrm{SE}(3) \subset \mathbb{R}^{4 \times 4} \begin{aligned}
& \text { Pro: easy to concatenate } \\
& \text { and invert } \\
& \text { Con: not minimal }
\end{aligned}
$$

- Representation as a twist coordinates

$$
\xi=\left(\begin{array}{llllll}
v_{x} & v_{y} & v_{z} & \omega_{x} & \omega_{y} & \omega_{z}
\end{array}\right)^{\top} \in \mathbf{R}^{6} \begin{aligned}
& \begin{array}{l}
\text { Pro: minimal } \\
\text { Con: need to convert } \\
\text { to matrix for concat- } \\
\text { enation and inversion }
\end{array}
\end{aligned}
$$

Remember: 3D Transformations

- From twist coordinates to twist

$$
\hat{\boldsymbol{\xi}}=\left(\begin{array}{cccc}
0 & -\omega_{z} & \omega_{y} & v_{x} \\
\omega_{z} & 0 & -\omega_{x} & v_{y} \\
-\omega_{y} & \omega_{x} & 0 & v_{z} \\
0 & 0 & 0 & 0
\end{array}\right) \in \operatorname{se}(3)
$$

- Exponential map between se(3) and SE(3)

$$
\begin{array}{lll}
& M=\exp \hat{\boldsymbol{\xi}} & \hat{\boldsymbol{\xi}}=\log M \\
\text { alternative notation: } & M=\exp [\boldsymbol{\xi}]^{\wedge} & \boldsymbol{\xi}=[\log M]^{\vee}
\end{array}
$$

Remember: Rodrigues' formula

- Given: Twist coordinates

$$
\begin{aligned}
\boldsymbol{\xi} & =\left(\boldsymbol{\omega}^{\top}, \boldsymbol{v}^{\top}\right)^{\top}=\left(\omega_{x}, \omega_{y}, \omega_{z}, v_{x}, v_{y}, v_{z}\right)^{\top} \\
& =\left(t \overline{\boldsymbol{\omega}}^{\top}, \boldsymbol{v}^{\top}\right)^{\top} \text { with }\|\overline{\boldsymbol{\omega}}\|=1, t=\|\boldsymbol{\omega}\|
\end{aligned}
$$

- Return: Homogeneous transformation

$$
\begin{aligned}
R & =I+[\overline{\boldsymbol{\omega}}]_{\times} \sin (t)+[\overline{\boldsymbol{\omega}}]_{\times}^{2}(1-\cos t) \\
\mathbf{t} & =(I-R)[\overline{\boldsymbol{\omega}}]_{\times} \boldsymbol{v}+\overline{\boldsymbol{\omega}} \overline{\boldsymbol{\omega}}^{\top} \boldsymbol{v} t \\
M & =\left(\begin{array}{cc}
R & \mathbf{t} \\
\mathbf{0}^{\top} & 1
\end{array}\right)
\end{aligned}
$$

Notation

- Camera poses in a minimal representation (e.g., twists)

$$
\mathbf{c}_{1}, \mathbf{c}_{2}, \ldots, \mathbf{c}_{n}
$$

- ... as transformation matrices

$$
M_{1}, M_{2}, \ldots, M_{n}
$$

- ... as rotation matrices and translation vectors

$$
\left(R_{1}, \mathbf{t}_{1}\right),\left(R_{2}, \mathbf{t}_{2}\right), \ldots,\left(R_{n}, \mathbf{t}_{n}\right)
$$

Incremental Motion Estimation

- Idea: Estimate camera motion from frame to frame
- Motion concatenation (for twists)

$$
\hat{\mathbf{c}}_{j}=\log \left(\exp \hat{\mathbf{c}}_{i} \exp \hat{\mathbf{z}}_{i j}\right)
$$

- Motion composition operator (in general)

$\mathbf{c}_{j}=\mathbf{c}_{i} \oplus \mathbf{z}_{i j}$
$\mathbf{z}_{i j}=\mathbf{c}_{j} \ominus \mathbf{c}_{i}$

Visual Navigation for Flying Robots

Incremental Motion Estimation

- Idea: Estimate camera motion from frame to frame

Loop Closures

- Idea: Estimate camera motion from frame to frame
- Problem:
- Estimates are inherently noisy
- Error accumulates over time \rightarrow drift

Incremental Motion Estimation

- Idea: Estimate camera motion from frame to frame

Visual Navigation for Flying Rober
13

Loop Closures

- Solution: Use loop-closures to minimize the drift / minimize the error over all constraints

Incremental Motion Estimation

- Idea: Estimate camera motion from frame to frame
- Two ways to compute $\mathbf{c}_{n}: \mathbf{c}_{n}=\mathbf{c}_{n-1} \oplus \mathbf{z}_{(n-1) n}$

Dr Jürgen Sturm, Gomputer Vision Group TUM

Graph SLAM

[Thrun and Montemerlo, 2006; Olson et al., 2006]

- Use a graph to represent the model
- Every node in the graph corresponds to a pose of the robot during mapping
- Every edge between two nodes corresponds to a spatial constraint between them
- Graph-based SLAM: Build the graph and find the robot poses that minimize the error introduced by the constraints

- Interleaving process of front-end and back-end
- A consistent map helps to determine new constraints by reducing the search space
Visual Navigation for Flying Robots
Dr. Jürgen Sturm, Computer Vision Group, TUM

Problem Definition

- Given: Set of observations $\mathbf{z}_{i j} \in \mathbb{R}^{6}$
- Wanted: Set of camera poses $\mathbf{c}_{1}, \ldots, \mathbf{c}_{n} \in \mathbb{R}^{6}$
$\boldsymbol{\rightarrow}$ State vector $\mathbf{x}=\left(\mathbf{c}_{1}^{\top}, \ldots, \mathbf{c}_{n}^{\top}\right)^{\top} \in \mathbb{R}^{6 n}$

Visual Navigation for Flying Robots
19

Error Function

- Assumption: Sensor noise is normally distributed

$$
\mathbf{e}_{i j} \sim \mathcal{N}\left(\mathbf{0}, \Sigma_{i j}\right)
$$

- Error term for one observation (proportional to negative loglikelihood)

$$
f_{i j}(\mathbf{x})=\mathbf{e}_{i j}(\mathbf{x})^{\top} \Sigma_{i j}^{-1} \mathbf{e}_{i j}(\mathbf{x})
$$

- Note: error is a scalar $f_{i j}(\mathbf{x}) \in \mathbb{R}$

Visual Navigation for Flying Robots
21
Dr. Jürgen Sturm, Computer Vision Group, TUM

Non-Linear Optimization Techniques

- Gradient descend
- Gauss-Newton
- Levenberg-Marquardt

Map Error

- Real observation $\mathbf{z}_{i j}$
- Expected observation $\quad \overline{\mathbf{z}}_{i j}=\mathbf{c}_{j} \ominus \mathbf{c}_{i}$
- Difference between observation and expectation

$$
\mathbf{e}_{i j}=\mathbf{z}_{i j} \ominus \overline{\mathbf{z}}_{i j}
$$

- Given the correct map, this difference is the result of sensor noise...

Visual Navigation for Flying Robots 20

Error Function

- Map error (over all observations)

$$
f(\mathbf{x})=\sum_{i j} f_{i j}(\mathbf{x})=\sum_{i j} \mathbf{e}_{i j}(\mathbf{x})^{\top} \Sigma_{i j}^{-1} \mathbf{e}_{i j}(\mathbf{x})
$$

- Minimize this error by optimizing the camera poses

$$
\mathbf{x}^{*}=\arg \min _{\mathbf{x}} \sum_{i j} \mathbf{e}_{i j}(\mathbf{x})^{\top} \Sigma_{i j}^{-1} \mathbf{e}_{i j}(\mathbf{x})
$$

- How can we solve this optimization problem?

Visual Navigation for Flying Robots 22 Dr. Jürgen Sturm, Computer Vision Group, TUM

Gauss-Newton Method

1. Linearize the error function
2. Compute its derivative
3. Set the derivative to zero
4. Solve the linear system
5. Iterate this procedure until convergence

Step 1: Linearize the Error Function

- Error function

$$
f(\mathbf{x})=\sum_{i j} f_{i j}(\mathbf{x})=\sum_{i j} \mathbf{e}_{i j}(\mathbf{x})^{\top} \Sigma_{i j}^{-1} \mathbf{e}_{i j}(\mathbf{x})
$$

- Evaluate the error function around the initial guess

$$
f(\mathbf{x}+\Delta \mathbf{x})=\sum_{i j} \mathbf{e}_{i j}(\mathbf{x}+\Delta \mathbf{x})^{\top} \Sigma_{i j}^{-1} \mathbf{e}_{i j}(\mathbf{x}+\Delta \mathbf{x})
$$

Derivatives of the Error Terms

- Does one error function $\mathrm{e}_{i j}(\mathrm{x})$ depend on all state variables in x ?

Linearize the Error Function

- Approximate the error function around an initial guess x using Taylor expansion

$$
\mathrm{e}_{i j}(\mathrm{x}+\Delta \mathrm{x}) \simeq \mathrm{e}_{i j}(\mathrm{x})+J_{i j} \Delta \mathrm{x}
$$

with

$$
J_{i j}(\mathbf{x})=\left(\begin{array}{llll}
\frac{\partial \mathbf{e}_{i j}(\mathbf{x})}{\partial \mathrm{c}_{1}} & \frac{\partial \mathbf{e}_{i j}(\mathbf{x})}{\partial \mathrm{c}_{2}} & \cdots & \frac{\partial \mathrm{e}_{j i}(\mathbf{x})}{\partial \mathrm{c}_{n}}
\end{array}\right)
$$

Derivatives of the Error Terms

- Does one error function $\mathrm{e}_{i j}(\mathbf{x})$ depend on all state variables in x ?
- No, $\mathrm{e}_{i j}(\mathrm{x})$ depends only on \mathbf{c}_{i} and c_{j}

Derivatives of the Error Terms

- Does one error function $\mathrm{e}_{i j}(\mathrm{x})$ depend on all state variables in x ?
- No, $\mathrm{e}_{i j}(\mathrm{x})$ depends only on \mathbf{c}_{i} and c_{j}
- Is there any consequence on the structure of the Jacobian?

Derivatives of the Error Terms

- Does one error function $\mathrm{e}_{i j}(\mathrm{x})$ depend on all state variables in x ?
- No, $\mathrm{e}_{i j}(\mathrm{x})$ depends only on \mathbf{c}_{i} and \mathbf{c}_{j}
- Is there any consequence on the structure of the Jacobian?
- Yes, it will be non-zero only in the columns corresponding to \mathbf{c}_{i} and \mathbf{c}_{j}
- Jacobian is sparse
$J_{i j}(\mathbf{x})=\left(\begin{array}{lllllll}0 & \cdots & \frac{\partial \mathrm{e}_{i j}(\mathrm{x})}{\partial \mathrm{c}_{\mathrm{c}}} & \cdots & \frac{\partial \mathrm{e}_{i j}(\mathrm{x})}{\partial \mathrm{c}_{j}} & \cdots & 0\end{array}\right)$

Linearizing the Error Function

Linearize $f(\mathbf{x})=\sum_{i j} \mathbf{e}_{i j}(\mathbf{x})^{T} \Sigma_{i j}^{-1} \mathbf{e}_{i j}(\mathbf{x})$

$$
\simeq \mathbf{c}+2 \mathbf{b}^{\top} \Delta \mathbf{x}+\Delta \mathbf{x}^{\top} H \Delta \mathbf{x}
$$

with $\mathbf{b}^{\top}=\sum_{i j} \mathbf{e}_{i j}^{\top} \Sigma_{i j}^{-1} J_{i j}$

$$
H=\sum_{i j} J_{i j}^{\top} \Sigma_{i j}^{-1} J_{i j}
$$

- What is the structure of \mathbf{b}^{\top} and H ? (Remember: all $J_{i j}$'s are sparse)

Illustration of the Structure

Illustration of the Structure

\qquad at ${\underset{\downarrow}{i}}$ and \mathbf{c}_{j} Non-zero on the main

Illustration of the Structure

$$
H=\sum_{i j} H_{i j}
$$

H: sparse block structure with main diagonal

$$
+\square+\ldots+
$$

Illustration of the Structure

Non-zero on the main
$H_{i j}=J_{i j}^{\top} \Sigma_{i j}^{-1} J_{i j}$

(Linear) Least Squares Minimization

1. Linearize error function

$$
f(\mathbf{x}+\Delta \mathbf{x}) \simeq \mathbf{c}+2 \mathbf{b}^{\top} \Delta \mathbf{x}+\Delta \mathbf{x}^{\top} H \Delta \mathbf{x}
$$

2. Compute the derivative

$$
\frac{\mathrm{d} f(\mathbf{x}+\Delta \mathbf{x})}{\mathrm{d} \Delta \mathrm{x}}=2 \mathbf{b}+2 H \Delta \mathbf{x}
$$

3. Set derivative to zero

$$
H \Delta \mathbf{x}=-\mathbf{b}
$$

4. Solve this linear system of equations, e.g.,

$$
\Delta \mathbf{x}=-H^{-1} \mathbf{b}
$$

Visual Navigation for Flying Robots 37 Dr. Jürgen Sturm, Computer Vision Group, TUM

Gauss-Newton Method

Problem: $f(\mathbf{x})$ is non-linear!
Algorithm: Repeat until convergence

1. Compute the terms of the linear system

$$
\mathbf{b}^{\top}=\sum_{i j} \mathbf{e}_{i j}^{T} \Sigma_{i j}^{-1} J_{i j} \quad H=\sum_{i j} J_{i j}^{\top} \Sigma_{i j}^{-1} J_{i j}
$$

2. Solve the linear system to get new increment

$$
H \Delta \mathrm{x}=-\mathrm{b}
$$

3. Update previous estimate

$$
\begin{aligned}
& \mathrm{x} \leftarrow \mathrm{x}_{38}+\Delta \mathrm{x}
\end{aligned}
$$

\qquad

Example in 1D

- Two camera poses $c_{1}, c_{2} \in \mathbb{R}$
- State vector $\mathbf{x}=\left(c_{1}, c_{2}\right)^{\top} \in \mathbb{R}^{2}$
- One (distance) observation $z_{12} \in \mathbb{R}$
- Initial guess $c_{1}=c_{2}=0$
- Observation $z_{12}=1$
- Sensor noise $\Sigma_{12}=0.5$

Sparsity of the Hessian

- The Hessian is
- positive semi-definit
- symmetric
- sparse
- This allows the use of efficient solvers
- Sparse Cholesky decomposition (~100M matrix elements)
- Preconditioned conjugate gradients ($\sim 1.000 \mathrm{M}$ matrix elements)
- ... many others
 39

Dr. Jürgen Sturm, Computer Vision Group, TUM

Example in 1D

- Error

$$
\begin{aligned}
e_{12} & =z_{12}-\bar{z}_{12} \\
& =z_{12}-\left(c_{2}-c_{1}\right)=1-(0-0)=1
\end{aligned}
$$

- Jacobian $J_{12}=\left(\frac{\partial e_{12}}{\partial c_{1}} \frac{\partial e_{12}}{\partial c_{2}}\right)=\left(\begin{array}{ll}1 & -1\end{array}\right)$
- Build linear system of equations

$$
\begin{aligned}
& b^{\top}=e_{12}^{\top} \Sigma^{-1} e_{12}=\left(\begin{array}{ll}
2 & -2
\end{array}\right) \\
& H=J_{12}^{\top} \Sigma^{-1} J_{12}=\left(\begin{array}{cc}
2 & -2 \\
-2 & 2
\end{array}\right)
\end{aligned}
$$

- Solve the system

$$
\Delta x=-H^{-1} b \quad \text { but } \operatorname{det} H=0 \text { ??? }
$$

Visual Navigation for Flying Robots
Dr. Jürgen Sturm, Computer Vision Group, TUM

Fixing One Node

- The constraint only specifies a relative constraint between two nodes
- Any poses for the nodes would be fine as long as their relative coordinates fit
- One node needs to be fixed (here: Option 2)

$$
\begin{aligned}
H & =\left(\begin{array}{cc}
2 & -2 \\
-2 & 2
\end{array}\right)+\left(\begin{array}{ll}
1 & 0 \\
0 & 0
\end{array}\right) \quad \begin{array}{l}
\text { additional constraint } \\
\text { that sets } \Delta n_{1}=0
\end{array} \\
\Delta x & =-H^{-1} b \\
\Delta x & =\left(\begin{array}{ll}
0 & 1
\end{array}\right)^{\top}
\end{aligned}
$$

Visual Navigation for Flying Robots

Levenberg-Marquardt Algorithm

- Idea: Add a damping factor

$$
\begin{aligned}
(H+\lambda I) \Delta \mathbf{x} & =-\mathbf{b} \\
\left(J^{\top} J+\lambda I\right) \Delta \mathbf{x} & =-J^{\top} \mathbf{e}
\end{aligned}
$$

- What is the effect of this damping factor?
- Small λ ?
- Large λ ?

Non-Linear Minimization

- One of the state-of-the-art solution to compute the maximum likelihood estimate
- Various open-source implementations available
- g2o [Kuemmerle et al., 2011]
- sba [Lourakis and Argyros, 2009]
- iSAM [Kaess et al., 2008]
- Other extensions:
- Robust error functions
- Alternative parameterizations

Visual Navigation for Flying Robots

Error Function

- Camera pose $\mathbf{c}_{i} \in \mathbb{R}^{6}$
- Feature point $\mathbf{p}_{j} \in \mathbb{R}^{3}$
- Observed feature location $z_{i j} \in \mathbb{R}^{2}$
- Expected feature location

$$
\begin{aligned}
& g\left(\mathbf{c}_{i}, \mathbf{p}_{j}\right)=R_{i}^{\top}\left(\mathbf{t}_{i}-\mathbf{p}_{j}\right) \\
& h\left(\mathbf{c}_{i}, \mathbf{p}_{j}\right)=g_{x, y}\left(\mathbf{c}_{i}, \mathbf{p}_{j}\right) / g_{z}\left(\mathbf{c}_{i}, \mathbf{p}_{j}\right)
\end{aligned}
$$

Levenberg-Marquardt Algorithm

- Idea: Add a damping factor

$$
\begin{aligned}
(H+\lambda I) \Delta \mathbf{x} & =-\mathbf{b} \\
\left(J^{\top} J+\lambda I\right) \Delta \mathbf{x} & =-J^{\top} \mathbf{e}
\end{aligned}
$$

- What is the effect of this damping factor?
- Small $\lambda \rightarrow$ same as least squares
- Large $\lambda \rightarrow$ steepest descent (with small step size)
- Algorithm
- If error decreases, accept Δx and reduce λ
- If error increases, reject Δx and increase λ
\qquad

Bundle Adjustment

- Graph SLAM: Optimize (only) the camera poses

$$
\mathbf{x}=\left(\mathbf{c}_{1}^{\top}, \ldots, \mathbf{c}_{n}^{\top}\right)^{\top} \in \mathbb{R}^{6 n}
$$

- Bundle Adjustment: Optimize both 6DOF camera poses and 3D (feature) points

$$
\mathbf{x}=(\underbrace{\mathbf{c}_{1}^{\top}, \ldots, \mathbf{c}_{n}^{\top}}_{\mathbf{c} \in \mathbb{R}^{6 n}}, \underbrace{\mathbf{p}_{1}^{\top}, \ldots, \mathbf{p}_{m}^{\top}}_{\mathbf{p} \in \mathbb{R}^{3 m}})^{\top} \in \mathbb{R}^{6 n+3 m}
$$

- Typically $m \gg n$ (why?)

Visual Navigation for Flying Robots 47

Error Function

- Difference between observation and expectation

$$
\mathbf{e}_{i j}=\mathbf{z}_{i j}-h\left(\mathbf{c}_{i}, \mathbf{p}_{j}\right)
$$

- Error function

$$
f(\mathbf{c}, \mathbf{p})=\sum_{i j} \mathbf{e}_{i j}^{\top} \Sigma^{-1} \mathbf{e}_{i j}
$$

- Covariance Σ is often chosen isotropic and on the order of one pixel

Illustration of the Structure

- Each camera sees several points
- Each point is seen by several cameras
- Cameras are independent of each other (given the points), same for the points

Visual Navigation for Flying Robot

Primary Structure

- Insight: H_{cc} and H_{pp} are block-diagonal (because each constraint depends only on one camera and one point)
- This can be efficiently solved using the Schur Complement

Schur Complement

- Given: Linear system

$$
\left(\begin{array}{ll}
A & B \\
C & D
\end{array}\right)\binom{\mathrm{x}}{\mathrm{y}}=\binom{\mathrm{a}}{\mathrm{~b}}
$$

- If D is invertible, then (using Gauss elimination)

$$
\begin{aligned}
\left(A-B D^{-1} C\right) \mathbf{x} & =\mathbf{a}-B D^{-1} \mathbf{b} \\
\mathbf{y} & =D^{-1}(\mathbf{b}-C \mathbf{x})
\end{aligned}
$$

- Reduced complexity, i.e., invert one $p \times p$ and $p \times p$ matrix instead of one $(p+q) \times(p+q)$ matrix
Visual Navigation for Flying Robots

From Sparse Maps to Dense Maps

- So far, we only looked at sparse 3D maps
- We know where the (sparse) cameras are
- We know where the (sparse) 3D feature points are
- How can we turn these models into volumetric 3D models?

[^1] 54

Visual Navigation for Flying Robots

Example: Converging Cameras Visual Navigation for Flying Robots Dr. Jürgen Sturm, Computer Vision Group. TUM	Example: Parallel Cameras $\underset{\square}{\square=\sum_{i}}$ \qquad
Rectification - In practice, it is convenient if the image scanlines (rows) are the epipolar lines Reproject image planes onto a common plane parallel to the baseline (two 3×3 homographies) - Afterwards pixel motion is horizontal	Example: Rectification
Basic Stereo Algorithm - For each pixel in the left image - Compare with every pixel on the same epipolar line in the right image - Pick pixel with minimum matching cost (noisy) - Better: match small blocks/patches (SSD, SAD, NCC) left image right image	Block Matching Algorithm Input: Two images and camera calibrations Output: Disparity (or depth) image Algorithm: 1. Geometry correction (undistortion and rectification) 2. Matching cost computation along search window 3. Extrema extraction (at sub-pixel accuracy) 4. Post-filtering (clean up noise)

Example - Input - Output	What is the Influence of the Block Size? - Common choices are 5x5 .. 11x11 - Smaller neighborhood: more details - Larger neighborhood: less noise - Suppress pixels with low confidence (e.g., check ratio best match vs. $2^{\text {nd }}$ best match)
Problems with Stereo - Block matching typically fails in regions with low texture - Global optimization/regularization (speciality of our research group) - Additional texture projection	Example: PR2 Robot with Projected Texture Stereo
Laser Triangulation Idea: - Well-defined light pattern (e.g., point or line) projected on scene - Observed by a line/matrix camera or a position-sensitive device (PSD) - Simple triangulation to compute distance	Laser Triangulation

Example: Neato XV-11 - K. Konolige, "A low-cost laser distance sensor", ICRA 2008 - Specs: 360deg, 10Hz, 30 USD	How Does the Data Look Like?
Laser Triangulation - Stripe laser + 2D camera - Often used on conveyer belts (volume sensing) - Large baseline gives better depth resolution but more occlusions \rightarrow use two cameras	Structured Light - Multiple stripes / 2D pattern - Data association more difficult
Structured Light - Multiple stripes / 2D pattern - Data association more difficult - Coding schemes - Temporal: Coded light	Structured Light - Multiple stripes / 2D pattern - Data association more difficult - Coding schemes - Temporal: Coded light - Wavelength: Color - Spatial: Pattern (e.g., diffraction patterns)

Sensor Principle of Kinect

- Kinect projects a diffraction pattern (speckles) in near-infrared light
- CMOS IR camera observes the scene

Sensor Principle of Kinect

Infrared pattern

Technical Specs

- Infrared camera has 640x480 @ 30 Hz
- Depth correlation runs on FPGA
- 11-bit depth image
- 0.8 m - 5 m range
- Depth sensing does not work in direct sunlight (why?)
- RGB camera has 640×480 @ 30 Hz
- Bayer color filter
- Four 16-bit microphones with DSP for beam forming @ 16 kHz
- Requires 12 V (for motor), weighs 500 grams
- Human pose recognition runs on Xbox CPU and uses only $10-15 \%$ processing power @ 30 Hz
(Paper: http://research.microsoft.com/apps/pubs/ddefault.aspx?id=145347)

Example Data

- Kinect provides color (RGB) and depth (D) video
- This allows for novel approaches for (robot) perception

Visual Navigation for Flying Robots

Dr. Jürgen Sturm, Computer Vision Group, TUM

Sensor Principle of Kinect

- Pattern is memorized at a known depth
- For each pixel in the IR image
- Extract 9x9 template from memorized pattern
- Correlate with current IR image over 64 pixels and search for the maximum
- Interpolate maximum to obtain sub-pixel accuracy (1/8 pixel)
- Calculate depth by triangulation

History

- 2005: Developed by PrimeSense (Israel)
- 2006: Offer to Nintendo and Microsoft, both companies declined
- 2007: Alex Kidman becomes new incubation director at Microsoft, decides to explore PrimeSense device. Johnny Lee assembles a team to investigate technology and develop game concepts
- 2008: The group around Prof. Andrew Blake and Jamie Shotton (Microsoft Research) develops pose recognition
- 2009: The group around Prof. Dieter Fox (Intel Labs / Univ. of Washington) works on RGB-D mapping and RGB-D object recognition
- Nov 4, 2010: Official market launch
- Nov 10, 2010: First open-source driver available
- 2011: First programming competitions (ROS 3D, PrimeSense), First workshops (RSS, Euron)
- 2012: First special Issues (JVCI, T-SMC)

\qquad	Exercise Sheet 5 - Prepare mid-term presentation - Proposed structure: 3 slides 1. Remind people who you are and what you are doing (can be same slide as last time) 2. Your work/achievements so far (video is a plus) 3. Your plans for the next two weeks - Hand in slides before July 3, 10am
Visual Navigation for Flying Robots Place Recognition, ICP, and Dense Reconstruction Dr. Jürgen Sturm	
Agenda for Today - Localization - Visual place recognition - Scan matching and Iterative Closest Point - Mapping with known poses (3D reconstruction) - Occupancy grids - Octtrees - Signed distance field - Meshing \qquad	Remember: Loop Closures - Use loop-closures to minimize the drift / minimize the error over all constraints
Loop Closures How can we detect loop closures efficiently? Visual Navigation for Flying Robots. Dr. Jürgen Sturm, Computer Vision Group, TUM	Loop Closures How can we detect loop closures efficiently? 1. Compare with all previous images $O(n)$ (not efficient) Visual Navigation for Flying Robots

Loop Closures How can we detect loop closures efficiently? 2. Use motion model and covariance to limit search radius (metric approach)	Loop Closures How can we detect loop closures efficiently? 3. Appearance-based place recognition (using bag of words)
Appearance-based Place Recognition Appearance can help to recover the pose estimate where metric approaches might fail \qquad	Analogy to Document Retrieval
Object/Scene Recognition - Analogy to documents: The content can be inferred from the frequency of visual words	Bag of Visual Words - Visual words = (independent) features face eatures

Bag of Visual Words

- Visual words = (independent) features
- Construct a dictionary of representative words

Learning the Visual Vocabulary	Example Image Representation - Build the histogram by assigning each detected feature to the closest entry in the codebook
Object/Scene Recognition - Compare histogram of new scene with those of known scenes, e.g., using - simple histogram intersection $\operatorname{score}(\mathbf{p}, \mathbf{q})=\sum \min \left(p_{i}, q_{i}\right)$ - naïve Bayes - more advanced statistical methods	Example: FAB-MAP [Cummins and Newman, 2008]
Timing Performance - Inference: 25 ms for 100k locations - SURF detection + quantization: 483 ms	Summary: Bag of Words [Fei-Fei and Perona, 2005; Nister and Stewenius, 2006] - Compact representation of content - Highly efficient and scalable - Requires training of a dictionary - Insensitive to viewpoint changes/image deformations (inherited from feature descriptor)

Laser-based Motion Estimation

- So far, we looked at motion estimation (and place recognition) from visual sensors
- Today, we cover motion estimation from range sensors
- Laser scanner (laser range finder, ultrasound)
- Depth cameras (time-of-flight, Kinect ...)
Visual Navigation for Flying Robots

25
Dr. Jürgen Sturm, Computer Vision Group, TUM

Laser Scanner

- Measures angles and distances to closest obstacles

$$
\mathbf{z}=\left(\theta_{1}, z_{1}, \ldots, \theta_{n}, z_{n}\right) \in \mathbb{R}^{2 n}
$$

- Alternative representation: 2D point set (cloud)

$$
\mathbf{z}=\left(x_{1}, y_{1}, \ldots, x_{n}, y_{n}\right)^{\top} \in \mathbb{R}^{2 n}
$$

- Probabilistic sensor model $p(z \mid x)$

Laser-based Motion Estimation

How can we best align two laser scans?

Exhaustive Search

- Convolve first scan with sensor model

- Sweep second scan over likelihood map, compute correlation and select best pose

Visual Navigation for Flying Robots 29

Laser-based Motion Estimation

How can we best align two laser scans?

- Exhaustive search
- Feature extraction (lines, corners, ...)
- Iterative minimization (ICP)

Example: Exhaustive Search [01son, $\left.{ }^{\circ} \mathrm{og}\right]$

- Multi-resolution correlative scan matching
- Real-time by using GPU
- Remember: SE(2) has 3 DOFs

Visual Navigation for Flying Robots

Does Exhaustive Search Generalize To 3D As Well?	Iterative Closest Point (ICP) - Given: Two corresponding point sets (clouds) $\begin{aligned} P & =\left\{\mathbf{p}_{1}, \ldots, \mathbf{p}_{n}\right\} \\ Q & =\left\{\mathbf{q}_{1}, \ldots, \mathbf{q}_{n}\right\} \end{aligned}$ - Wanted: Translation \mathbf{t} and rotation R that minimize the sum of the squared error $E(R, \mathbf{t})=\frac{1}{n} \sum_{i=1}^{n}\left\\|\mathbf{p}_{i}-R \mathbf{q}_{i}-\mathbf{t}\right\\|^{2}$ where \mathbf{p}_{i} and \mathbf{q}_{i} are corresponding points
Known Correspondences Note: If the correct correspondences are known, both rotation and translation can be calculated in closed form.	Known Correspondences - Idea: The center of mass of both point sets has to match $\overline{\mathbf{p}}=\frac{1}{n} \sum_{i} \mathbf{p}_{i} \quad \overline{\mathbf{q}}=\frac{1}{n} \sum_{i} \mathbf{q}_{i}$ - Subtract the corresponding center of mass from every point - Afterwards, the point sets are zero-centered, i.e., we only need to recover the rotation...
Known Correspondences - Decompose the matrix $W=\sum_{i}\left(\mathbf{p}_{i}-\overline{\mathbf{p}}\right)\left(\mathbf{q}_{i}-\overline{\mathbf{q}}\right)^{\top}=U S V^{\top}$ using singular value decomposition (SVD) - Theorem If rank $W=3$, the optimal solution of $E(R, \mathbf{t})$ is unique and given by $\begin{aligned} R & =U V^{\top} \\ \mathbf{t} & =\overline{\mathbf{p}}-R \overline{\mathbf{q}} \end{aligned}$ (for proof, see http://hss.ulb.uni-bonn.de/2006/0912/0912.pdf, p.34/35)	Unknown Correspondences - If the correct correspondences are not known, it is generally impossible to determine the optimal transformation in one step

ICP Algorithm

[Besl \& McKay, 92]

- Algorithm: Iterate until convergence
- Find correspondences
- Solve for R,t
- Converges if starting position is "close enough"

ICP Variants

Many variants on all stages of ICP have been proposed:

- Selecting and weighting source points
- Finding corresponding points
- Rejecting certain (outlier) correspondences
- Choosing an error metric
- Minimization

Performance Criteria

- Various aspects of performance
- Speed
- Stability (local minima)
- Tolerance w.r.t. noise and/or outliers
- Basin of convergence (maximum initial misalignment)
- Choice depends on data and application

Selecting Source Points

- Use all points
- Uniform sub-sampling
- Random sampling
- Feature-based sampling
- Normal-space sampling
- Ensure that samples have normals distributed as uniformly as possible

Normal Shooting

- Project along normal, intersect other mesh

- Slightly better than closest point for smooth meshes, worse for noisy or complex meshes

Speeding Up Correspondence Search

Finding closest point is most expensive stage of the ICP algorithm

- Build index for one point set (kd-tree)
- Use simpler algorithm (e.g., projection-based matching)

Vssual Nevigstion for flive fobots	${ }_{51}$	Dr.firsen Sum, Computer vision Group, TUM

Error Metrics

- Point-to-point
- Point-to-plane lets flat regions slide along each other

- Generalized ICP: Assign individual covariance to each data point [Segal, 2009]

Closest Compatible Point

- Can improve effectiveness of both the previous variants by only matching to compatible points
- Compatibility based on normals, colors, ...
- In the limit, degenerates to feature matching

Projection-based Matching

- Slightly worse performance per iteration
- Each iteration is one to two orders of magnitude faster than closest-point
- Requires point-to-plane error metric
Visual Navigation for Flying Robots
- Only point-to-point metric has closed form solution(s)
- Other error metrics require non-linear minimization methods
- Which non-linear minimization methods do you remember?
- Which robust error metrics do you remember?

Robust Error Metrics	Example: Real-Time ICP on Range Images [Rusinkiewicz and Levoy, 2001] - Real-time scan alignment - Range images from structure light system (projector and camera, temporal coding)
ICP: Summary - ICP is a powerful algorithm for calculating the displacement between point clouds - The overall speed depends most on the choice of matching algorithm - ICP is (in general) only locally optimal \rightarrow can get stuck in local minima	Agenda for Today - Localization - Visual place recognition - Scan matching and Iterative Closest Point - Mapping with known poses (3D reconstruction) - Occupancy grids - Octtrees - Signed distance field - Meshing
Occupancy Grid Idea: - Represent the map m using a grid - Each cell is either free or occupied $\mathbf{m}=\left(m_{1}, \ldots, m_{n}\right) \in\{\text { empty }, \text { occ }\}^{n}$ - Robot maintains a belief $\operatorname{Bel}(\mathbf{m})$ on map state Goal: Estimate the belief from sensor observations $\operatorname{Bel}(\mathbf{m})=P\left(\mathbf{m} \mid \mathbf{z}_{1}, \ldots, \mathbf{z}_{t}\right)$	Occupancy Grid - Assumptions - Map is static - Cells have binary state (empty or occupied) - All cells are independent of each other - As a result, each cell m_{i} can be estimated independently from the sensor observations - Will also drop index i (for the moment)

Mapping

- Goal: Estimate

$$
\operatorname{Bel}(m)=P\left(m \mid z_{1}, \ldots, z_{n}\right)
$$

- How can this be computed?

Binary Bayes Filter

- Prior probability that cell is occupied $P(m)$ (often 0.5)
- Inverse sensor model $P\left(m \mid z_{t}\right)$ is specific to the sensor used for mapping
- The log-odds representation can be used to increase speed and numerical stability

$$
L(x):=\log \frac{p(x)}{p(\neg x)}=\log \frac{p(x)}{1-p(x)}
$$

Clamping Update Policy

- Often, the world is not "fully" static
- Consider an appearing/disappearing obstacle
- To change the state of a cell, the filter needs as many positive (negative) observations
- Idea: Clamp the beliefs to min/max values

$$
L^{\prime}\left(m \mid z_{1: t}\right)=\max \left(\min \left(L\left(m \mid z_{1: t}\right), l_{\max }\right), l_{\min }\right)
$$

Binary Bayes Filter

- Goal: Estimate

$$
\operatorname{Bel}(m)=P\left(m \mid z_{1}, \ldots, z_{n}\right)
$$

- How can this be computed?
- E.g., using the Bayes Filter from Lecture 3

$$
\begin{aligned}
& P\left(m \mid z_{1: t}\right)= \\
& \left(1+\frac{1-P\left(m \mid z_{t}\right)}{P\left(m \mid z_{t}\right)} \frac{1-P\left(m \mid z_{1: t-1}\right)}{P\left(m \mid z_{1: t-1}\right)} \frac{P(m)}{1-P(m)}\right)^{-1}
\end{aligned}
$$

Binary Bayes Filter using Log-Odds

- In each time step, compute

$$
L\left(m \mid z_{1: t}\right)=L\left(m \mid z_{1: t-1}^{\text {previous belief }}\right)+L\left(m \mid z_{t}\right)+L(m)
$$

- When needed, compute current belief as

$$
\operatorname{Bel}_{t}(m)=1-\frac{1}{1+\exp L\left(m \mid z_{1: t}\right)}
$$

Sensor Model

- For the Bayes filter, we need the inverse sensor model

$$
p(m \mid z)
$$

- Let's consider an ultrasound sensor
- Located at $(0,0)$
- Measures distance of 2.5 m
- How does the inverse sensor model look like?

Typical Sensor Model for Ultrasound

- Combination of a linear function (in x direction) and a Gaussian (in y-direction)

- Question: What about a laser scanner?

Visual Navigation for Flying Robots 67

Resulting Map

Note: The maximum likelihood map is obtained by clipping the occupancy grid map at a threshold of 0.5

Visual Navigation for Flying Robots

Memory Consumption

- Consider we want to map a building with $40 \times 40 \mathrm{~m}$ at a resolution of 0.05 cm
- How much memory do we need?

$$
\left(\frac{40}{0.05}\right)^{2}=640.000 \mathrm{cells}=4.88 \mathrm{mb}
$$

- And for 3D?

$$
\left(\frac{40}{0.05}\right)^{3}=512.000 .000 \mathrm{cells}=3.8 \mathrm{gb}
$$

- And what about a whole city?
\qquad fowemsumamomensencomonw

Example: Updating the Occupancy Grid

Memory Consumption

- Consider we want to map a building with $40 \times 40 \mathrm{~m}$ at a resolution of 0.05 cm
- How much memory do we need?

Map Representation by Octtrees

- Tree-based data structure
- Recursive subdivision of space into octants
- Volumes can be allocated as needed
- Multi-resolution

Visual Navigation for Flying Robots

72
Dr. Jürgen Sturm, Computer Vision Group, TUM

Example: OctoMap

[Wurm et al., 2011]

- Freiburg, building 79
$44 \times 18 \times 3 \mathrm{~m}^{3}, 0.05 \mathrm{~m}$ resolution, 0.7 mb on disk

Signed Distance Field (SDF)

[Curless and Levoy, 1996]

- Idea: Instead of representing the cell occupancy, represent the distance of each cell to the surface
- Occupancy grid maps: explicit representation

- SDF: implicit representation

Weighting Function

- Weight each observation according to its confidence

- Weight can additionally be influenced by other modalities (reflectance values, ...)

Example: OctoMap

[Wurm et al., 2011]

- Freiburg computer science campus $292 \times 167 \times 28 \mathrm{~m}^{3}, 0.2 \mathrm{~m}$ resolution, 2 mb on disk

Signed Distance Field (SDF)

[Curless and Levoy, 1996]

Algorithm:

1. Estimate the signed distance field
2. Extract the surface using interpolation
(surface is located at zero-crossing)

Data Fusion

- Each voxel cell x in the SDF stores two values
- Weighted sum of signed distances $D_{t}(\mathbf{x})$
- Sum of all weights $W_{t}(\mathbf{x})$
- When new range image arrives, update every voxel cell according to

$$
\begin{aligned}
D_{t+1}(\mathbf{x}) & =D_{t}(\mathbf{x})+w_{t+1}(\mathbf{x}) d_{t+1}(\mathbf{x}) \\
W_{t+1}(\mathbf{x}) & =W_{t}(\mathbf{x})+w_{t+1}(\mathbf{x})
\end{aligned}
$$

Two Nice Properties

- Noise cancels out over multiple measurements

- Zero-crossing can be extracted at sub-voxel accuracy (least squares estimate)
1D Example: $\quad x^{*}=\frac{\sum D_{t}(x) x}{\sum W_{t}(x) x}$
Visul Navigation for Flying Robots
SDF Fusion

Ray Casting

- For each camera pixel, shoot a ray and search for the first zero crossing in the SDF
- Value in the SDF can be used to skip along when far from surface

Dr. Jürgen Sturm, Computer Vision Group, TUM

Visualizing Signed Distance Fields

Common approaches to iso surface extraction:

1. Ray casting (GPU, fast)

For each camera pixel, shoot a ray and search for zero crossing
2. Poligonization (CPU, slow)
E.g., using the marching cubes algorithm Advantage: outputs triangle mesh

Ray Casting

- Interpolation reduces artifacts
- Close to surface, gradient represents the surface normal

Visual Navigation for Flying Robots
or. Jurgen Sturm, Computer Vision Group, TUM

Marching Cubes

First in 2D, marching squares:

- Evaluate each cell separately
- Check which edges are inside/outside
- Generate triangles according to lookup table
- Locate vertices using least squares

Visual Navigation for Flying Robots
85
Dr. Jürgen Sturm, Computer Vision Group, TUM

KinectFusion

[Newcombe et al., 2011]

- Projective ICP with point-to-plane metric
- Truncated signed distance function (TSDF)
- Ray Casting

Visual Navigation for Flying Robots

Visual Navigation for Flying Robots Motion Planning Dr. Jürgen Sturm	in.tum.summer party \& career forum The Department of Informatics would like to invite its students and employees to its summer party and career forum. July 4, 2012 $3 \mathrm{pm}-6 \mathrm{pm}$ Career Forum: Presentations given by Google, Capgemini etc, stands, panel discussion: TUM alumni talk about their career paths in informatics $3 \mathrm{pm}-6 \mathrm{pm}$ Foosball Tournament Starting at 5 pm Summer Party: $B B Q$, live band and lots of fun! www.in.tum.de/2012summerparty
Motivation: Flying Through Forests	Motion Planning Problem - Given obstacles, a robot, and its motion capabilities, compute collision-free robot motions from the start to goal.
Motion Planning Problem What are good performance metrics?	Motion Planning Problem What are good performance metrics? - Execution speed / path length - Energy consumption - Planning speed - Safety (minimum distance to obstacles) - Robustness against disturbances - Probability of success - ...

Motion Planning Examples

Motion planning is sometimes also called the piano mover's problem

Agenda for Today

- Configuration spaces
- Roadmap construction
- Search algorithms
- Path optimization and re-planning
- Path execution
Configuration Space
- The configuration space (C-space) is the space of all possible configurations
- C-space topology is usually not Cartesian
- C-space is described as a topological manifold

sual Navigation for Flying Robots
connecting path

Dr. Jürgen Sturm, Computer Vision Group, TUM

Configuration Space

- Work space
- Typically 3D pose (position + orientation) $\rightarrow 6$ DOF
- Configuration space
- Reduced pose (position + yaw) $\rightarrow 4$ DOF
- Full pose $\rightarrow 6$ DOF
- Pose + velocity $\rightarrow 12$ DOF
- Joint angles of manipulation robot
- ...
- Planning takes place in configuration space

| Visual Navigation for Flying Robots 10 | Dr. Jürgen Sturm, Computer Vision Group, TUM |
| :--- | :--- | :--- |

Notation

- Configuration space $C \subset \mathbb{R}^{d}$
- Configuration $\mathbf{q} \in C$
- Free space $C_{\text {free }}$
- Obstacle space $C_{\text {obs }}$
- Properties

$$
\begin{aligned}
& C_{\text {free }} \cup C_{\text {obs }}=C \\
& C_{\text {free }} \cap C_{\text {obs }}=\emptyset
\end{aligned}
$$

Free Space Example

- What are admissible configurations for the robot? Equiv.: What is the free space?
- "Point" robot

Example

- What are admissible configurations for the robot? Equiv.: What is the free space?
- Circular robot

Example

- What are admissible configurations for the robot? Equiv.: What is the free space?
- Large circular robot

Example

- What are admissible configurations for the robot? Equiv.: What is the free space?
- "Point" robot

Visual Navigation for Flying Robots
14
Dr. Jürgen Sturm, Computer Vision Group, TUM

Example

- What are admissible configurations for the robot? Equiv.: What is the free space?
- Circular robot

Visual Navigation for Flying Robots
Dr. Jürgen Sturm, Computer Vision Group, TUM

Computing the Free Space

- Free configuration space is obtained by sliding the robot along the edge of the obstacle regions "blowing them up" by the robot radius
- This operation is called the Minowski sum

$$
A \oplus B=\{a+b \mid a \in A, b \in B\}
$$

where $A, B \subset \mathbb{R}^{d}$

Example: Minowski Sum

- Triangular robot and rectangular obstacle

Basic Motion Planning Problem

- Given
- Free space $C_{\text {free }}$
- Initial configuration \mathbf{q}_{I}
- Goal configuration \mathbf{q}_{G}

- Goal: Find a continuous path

$$
\tau:[0,1] \rightarrow C_{\text {free }}
$$

with $\tau(0)=\mathbf{q}_{I}, \tau(1)=\mathbf{q}_{G}$

Visual Navigation for Flying Robots 21

C-Space Discretizations

Two competing paradigms

- Combinatorial planning (exact planning)
- Sampling-based planning (probabilistic/randomized planning)

Example

- Polygonal robot, translation only

- C-space is obtained by sliding the robot along the edge of the obstacle regions
Visual Navigation for Flying Robots \qquad

Motion Planning Sub-Problems

1. C-Space discretization
(generating a graph / roadmap)
2. Search algorithm
(Dijkstra's algorithm, A^{*}, \ldots...)
3. Re-planning
(D^{*}, \ldots)
4. Path tracking
(PID control, potential fields, funnels, ...)

Combinatorial Methods

- Mostly developed in the 1980s
- Extremely efficient for low-dimensional problems
- Sometimes difficult to implement
- Usually produce a road map in $C_{\text {free }}$
- Assume polygonal environments

Roadmaps

A roadmap is a graph in $C_{\text {free }}$ where

- Each vertex is a configuration $\mathbf{q} \in C_{\text {free }}$
- Each edge is a path $\tau:[0,1] \rightarrow C_{\text {free }}$ for which $\tau(0)$ and $\tau(1)$ are vertices

Visual Navigation for Flying Robots 25

Roadmap Construction

We consider here three combinatorial methods:

- Trapezoidal decomposition
- Shortest path roadmap
- Regular grid
- ... but there are many more!

Afterwards, we consider two sampling-based methods:

- Probabilistic roadmaps (PRMs)
- Rapidly exploring random trees (RRTs)

Roadmap Construction

- Place vertices
- in the center of each trapezoid
- on the edge between two neighboring trapezoids
- Resulting road map

Visual Navigation for Flying Robots

Roadmap Construction

- Decompose horizontally in convex regions using plane sweep
- Sort vertices in x direction. Iterate over vertices while maintaining a vertically sorted list of edges

Visual Navigation for Flying Robots
28
Dr. Jürgen Sturm, Computer Vision Group, TUM

Example Query

Compute path from q_{I} to q_{G}

- Identify start and goal trapezoid
- Connect start and goal location to center vertex
- Run search algorithm (e.g., Dijkstra)

Visual Navigation for Flying Robots
30
Dr. Jürgen Sturm, Computer Vision Group, TUM

Properties of Trapezoidal Decomposition + Easy to implement - Does not generate + Efficient computation shortest path + Scales to 3D	Shortest-Path Roadmap - Contains all vertices and edges that optimal paths follow when obstructed - Imagine pulling a tight string between q_{t} and q_{G}
Roadmap Construction - Vertices = all sharp corners (>180deg, red) - Edges 1. Two consecutive sharp corners on the same obstacle (light blue) 2. Bitangent edges (when line connecting two vertices extends into free space, dark blue)	Example Query Compute path from q_{I} to q_{G} - Connect start and goal location to all visible roadmap vertices - Run search algorithm (e.g., Dijkstra)
Example Query	Approximate Decompositions - Construct a regular grid - High memory consumption (and number of tests) - Any ideas?

Approximate Decompositions

- Construct a regular grid
- Use quadtree/octtree to save memory
- Sometimes difficult to determine status of cell

Approximate Decompositions

+ Easy to construct - High number of tests
+ Most used in practice

Visual Navigation for Flying Robots
38
Dr. Jürgen Sturm, Computer Vision Group, TUM

Summary: Combinatorial Planning

- Pro: Find a solution when one exists (complete)
- Con: Become quickly intractable for higher dimensions
- Alternative: Sampling-based planning Weaker guarantees but more efficient

Sampling-based Methods

- Abandon the concept of explicitly characterizing $C_{\text {free }}$ and $C_{\text {obs }}$ and leave the algorithm in the dark when exploring $C_{\text {free }}$
- The only light is provided by a collisiondetection algorithm that probes C to see whether some configuration lies in $C_{\text {free }}$
- We will have a look at
- Probabilistic road maps (PRMs)
- Rapidly exploring random trees (RRTs)

Visual Navigation for Flying Robots 40 Dr. Jürgen Sturm, Computer Vision Group, TUM

PRM Example

1. Sample vertex
2. Find neighbors
3. Add edges

Step 3: Check edges for collisions, e.g., using discretized line search

- Add vertices and edges until roadmap is dense enough

Probabilistic Roadmaps + Probabilistic. complete + Scale well to higher dimensional C-spaces + Very popular, many extensions Do not work well for some problems (e.g., narrow passages) - Not optimal, not complete	Rapidly Exploring Random Trees [Lavalle and Kuffner, 1999] - Idea: Grow tree from start to goal location Existing RRT is "grown" as follows..
Rapidly Exploring Random Trees - Algorithm 1. Initialize tree with first node \mathbf{q}_{I} 2. Pick a random target location (every $100^{\text {th }}$ iteration, choose q_{G}) 3. Find closest vertex in roadmap 4. Extend this vertex towards target location 5. Repeat steps until goal is reached - Why not pick q_{G} every time? \qquad \qquad	Rapidly Exploring Random Trees - Algorithm 1. Initialize tree with first node q_{I} 2. Pick a random target location (every $100^{\text {th }}$ iteration, choose q_{G}) 3. Find closest vertex in roadmap 4. Extend this vertex towards target location 5. Repeat steps until goal is reached - Why not pick q_{G} every time? - This will fail and run into $C_{\text {obs }}$ instead of exploring \qquad
Rapidly Exploring Random Trees [Lavalle and Kuffner, 1999] - RRT: Grow trees from start and goal location towards each other, stop when they connect	RRT Examples - 2-DOF example - 3-DOF example (2D translation + rotation)

Non-Holonomic Robots

- Some robots cannot move freely on the configuration space manifold
- Example: A car can not move sideways
- 2-DOF controls (speed and steering)
- 3-DOF configuration space (2D translation + rotation)

Visual Navigation for Flying Robots
49

Non-Holonomic Robots

- RRTs can naturally consider such constraints during tree construction
- Example: Car-like robot

Visual Navigation for Flying Robots
Jürgen Sturm, Computer Vision Group, TUM

Summary: Sampling-based Planning

- More efficient in most practical problems but offer weaker guarantees
- Probabilistically complete (given enough time it finds a solution if one exists, otherwise, it may run forever)
- Performance degrades in problems with narrow passages

Motion Planning Sub-Problems

1. C-Space discretization (generating a graph / roadmap)
2. Search algorithms
(Dijkstra's algorithm, A^{*}, \ldots..)
3. Re-planning
(D^{*}, \ldots)
4. Path tracking
(PID control, potential fields, funnels, ...)

Search Algorithms

- Given: Graph G consisting of vertices and edges (with associated costs)
- Wanted: find the best (shortest) path between two vertices
- What search algorithms do you know?

Uninformed Search

- Breadth-first

- Complete
- Optimal if action costs equal
- Time and space $O\left(b^{d}\right)$

- Depth-first

- Not complete in infinite spaces
- Not optimal
- Time $O\left(b^{d}\right)$
- Space $O(b d)$
(can forget explored subtrees)

Informed Search

- Idea
- Select nodes for further expansion based on an evaluation function $f(n)$
- First explore the node with lowest value
- What is a good evaluation function?

Informed Search

- Greedy best-first search

- Simply expand the node closest to the goal

$$
f(n)=h(n)
$$

- Not optimal, not complete
- A* search
- Combines path cost with estimated goal distance

$$
f(n)=g(n)+h(n)
$$

- Optimal and complete (if $h(n)$ never overestimates actual cost)

Example: Dijkstra’s Algorithm

- Extension of breadth-first with arbitrary (nonnegative) costs

Visual Navigation for Flying Robots
56 Dr. Jürgen Sturm, Computer Vision Group, TUM

Informed Search

- Idea
- Select nodes for further expansion based on an evaluation function $f(n)$
- First explore the node with lowest value
- What is a good evaluation function?
- Often a combination of
- Path cost so far $g(n)$
- Heuristic function $h(n)$ (e.g., estimated distance to goal, but can also encode additional domain knowledge)

What is a Good Heuristic Function?

- Choice is problem/application-specific
- Two popular choices
- Manhattan distance (neglecting obstacles)
- Euclidean distance (neglecting obstacles)
- Value iteration / Dijkstra (from the goal backwards)

Example: Path Smoothing

- Replace pairs of nodes by line segments

- Non-linear optimization

D* Search

- Idea: Incrementally repair path keeping its modifications local around robot pose
- Many variants:
- D* (Dynamic A*) [Stentz, ICRA '94] [Stentz, IJCAI ‘95]
- D* Lite [Koenig and Likhachev, AAAI ‘02]
- Field D* [Ferguson and Stenz, JFR ‘06]
D^{*} Example
- Situation at start

D* Search

- Problem: In unknown, partially known or dynamic environments, the planned path may be blocked and we need to replan
- Can this be done efficiently, avoiding to replan the entire path?

D* Search

Main concepts

- Invert search direction (from goal to start)
- Goal does not move, but robot does
- Map changes (new obstacles) have only local influence close to current robot pose
- Mark the changed node and all dependent nodes as unclean (=to be re-evaluated)
- Find shortest path to start (using A*) while reusing previous solution
sual Navigation for Flying Robots
10 Dr. Jürgen Sturm, Computer Vision Group, TUM D* Example
- After discovery of blocked cell

D* Search

- D* is as optimal and complete as A^{*}
- D* and its variants are widely used in practice
- Field D* was running on Mars rovers Spirit and Opportunity

Real-Time Motion Planning

- What is the maximum time needed to re-plan in case of an obstacle detection?
- What if the robot has to react quickly to unforeseen, fast moving objects?
- Do we really need to re-plan for every obstacle on the way?

Layered Motion Planning

- An approximate global planner computes paths ignoring the kinematic and dynamic vehicle constraints (not real-time)
- An accurate local planner accounts for the constraints and generates feasible local trajectories in real-time (collision avoidance)

Local Planner

- Given: Path to goal (sequence of via points), range scan of the local vicinity, dynamic constraints
- Wanted: Collision-free, safe, and fast motion towards the goal (or next via point)
- Typical approaches:
- Potential fields
- Dynamic window approach
\qquad
Dynamic Window Approach
[Simmons, 96], [Fox et al., 97], [Brock \& Khatib, 99]
- Consider a 2D planar robot

Dynamic Window Approach

[Simmons, 96], [Fox et al., 97], [Brock \& Khatib, 99]

- Consider additionally dynamic constraints

Navigation with Potential Fields

- Treat robot as a particle under the influence of a potential field
- Pro:
- easy to implement
- Con:
- suffers from local minima
- no consideration of dynamic constraints

\qquad 80 \qquad

Dynamic Window Approach

[Simmons, 96], [Fox et al., 97], [Brock \& Khatib, 99]

- Consider a 2D planar robot + 2D environment

Dynamic Window Approach

[Simmons, 96], [Fox et al., 97], [Brock \& Khatib, 99]

- Navigation function (potential field)

Reminder: Belief Distributions - Actions increase the uncertainty (in general) - Observations decrease the uncertainty (always)	Solution 1: Shape The Environment To Decrease Uncertainty - Assume a robot without sensors - What is a good navigation plan?
Solution 1: Shape The Environment To Decrease Uncertainty - Plan 1: Take the shortest path - What is the probability of success of plan 1 ?	Solution 1: Shape The Environment To Decrease Uncertainty - What is the probability of success of plan 2?
Solution 1: Shape The Environment To Decrease Uncertainty - Pro: Simple solution, need fewer/no sensors - Con: Requires task specific design/engineering of both the robot and the environment - Applications: - Docking station - Perception-less manipulation (on conveyer belts) - ...	Solution 2: Add (More/Better) Sensors

Solution 3: POMDPs

- Partially observable Markov decision process (POMDP)
- Considers uncertainty of the motion model and sensor model
- Finite/infinite time horizon
- Resulting policy is optimal
- One solution technique: Value iteration
- Problem: In general (and in practice) computationally intractable (PSPACE-hard)
visual Navigation for Flying Robots Dr. Jürgen Sturm, computer Vision Group, TUM

Continuum of Possible Approaches to Motion Planning

| Conventional
 path planner | POMDP |
| :--- | :--- | :--- |
| tractable
 not robust | intractable
 robust |
| | maybe we can find |
| something in between... | |

Remember: Motion Planning in HighDimensional Configuration Spaces

Planning in Information Spaces
 [He et al., 2008]

- The posterior distribution at a vertex depends on the prior distribution (and thus on path to the vertex)
- Need to perform forward simulation (and belief prediction) along each edge for every start state
- Computing minimum cost path of 30 edges: ≈ 100 seconds
\qquad

Mission Planning

- Goal: Generate and execute a plan to accomplish a certain (navigation) task
- Example tasks
- Exploration
- Coverage
- Surveillance
- Tracking
- ...

Exploration and SLAM

- SLAM is typically passive, because it consumes incoming sensor data
- Exploration actively guides the robot to cover the environment with its sensors
- Exploration in combination with SLAM: Acting under pose and map uncertainty
- Uncertainty should/needs to be taken into account when selecting an action

Exploration

- By reasoning about control, the mapping process can be made much more effective
- Question: Where to move next?

- This is also called the next-best-view problem
vaman wasesomororefymerobos \qquad
${ }_{31}$ D. Vivens sum Compuev vison soup TuM

Example

- Where should the robot go next?

Information Theory

- Entropy is a general measure for the uncertainty of a probability distribution
- Entropy = Expected amount of information needed to encode an outcome $X=x$

$$
\begin{aligned}
H(X) & =E(I(X)) \\
& =E(-\log p(X)) \\
& =-\sum_{i=1}^{n} p\left(x_{i}\right) \log p\left(x_{i}\right)
\end{aligned}
$$

Example: Binary Random Variable

- Binary random variable $X \in\{0,1\}$
- Probability distribution $P(X=1)=p$
- How many bits do we need to transmit one sample of $p(X)$?
- Answer:

Visual Navigation for Flying Robots
37

Information Theory

- Information gain = Uncertainty reduction

$$
I G(X, Y)=H(X)-H(X \mid Y)
$$

- Conditional entropy

$$
H(X \mid Y)=\sum_{i, j} p\left(x_{i}, y_{j}\right) \log \frac{p\left(y_{j}\right)}{p\left(x_{i}, y_{j}\right)}
$$

The overall entropy is the sum of the individual entropy values

Maximizing the Information Gain

- To compute the information gain one needs to know the observations obtained when carrying out an action

$$
a^{*}=\arg \max _{a \in A} I G(m, a)
$$

- This quantity is not known! Reason about potential measurements

$$
a^{*}=\arg \max _{a \in A} \int I G(m, z) p(z \mid a) \mathrm{d} z
$$

Exploration Costs

- So far, we did not consider the cost of executing an action (e.g., time, energy, ...)

- Utility = uncertainty reduction - cost
- Select the action with the highest expected utility

$$
a^{*}=\arg \max _{a \in A} I G(m, a)-\alpha \cdot E(\operatorname{cost}(m, a))
$$

Exploration

- For each location <x,y>
- Estimate the number of cells robot can sense (e.g., simulate laser beams using current map)
- Estimate the cost of getting there

\qquad 43

Exploration Actions

- So far, we only considered reduction in map uncertainty
- In general, there are many sources of uncertainty that can be reduced by exploration
- Map uncertainty (visit unexplored areas)
- Trajectory uncertainty (loop closing)
- Localization uncertainty (active re-localization by re-visiting known locations)

Visual Navigation for Flying Robot
45

Example: Active Loop Closing
[Stachniss et al., 2005]

- Entropy evolution

Visual Navigation for Flying Robots 48

Example: Segmentation-based Exploration
 [Wurm et al., IROS 2008]

- Two-layer hierarchical role assignments using Hungarian algorithm (1: rooms, 2: targets in room)
- Reduces exploration time and risk of interferences

- Given: Known environment with obstacles
- Wanted: The shortest trajectory that ensures complete (sensor) coverage

Nisual githor Flying Robots

Coverage Path Planning: Applications

- For flying robots
- Search and rescue

Area surveillance

- Environmental inspection
- Inspection of buildings (bridges)
- For service robots
- Lawn mowing
- Vacuum cleaning
- For manipulation robots
- Painting
- Automated farming

Coverage Path Planning

sual Navigation for Flying Robots
Coverage Path Planning

- What is a good coverage strategy?
- What would be a good cost function?
\qquad

Coverage Path Planning

- What is a good coverage strategy?
- What would be a good cost function?
- Amount of redundant traversals
- Number of stops and rotations
- Execution time
- Energy consumption
- Robustness
- Probability of success
- ...

Coverage of Simple Shapes

- Approximately optimal solution often easy to compute for simple shapes (e.g., trapezoids)

Idea
[Mannadiar and Rekleitis, ICRA 2011]

Coverage Based On Cell Decomposition

[Mannadiar and Rekleitis, ICRA 2011]
Approach:

1. Decompose map into "simple" cells
2. Compute connectivity between cells and build graph
3. Solve coverage problem on reduced graph

Step 2: Build Reeb Graph

[Mannadiar and Rekleitis, ICRA 2011]

- Vertices = Critical points (that triggered the split)
- Edges = Connectivity between critical points

Resulting Coverage Plan
[Mannadiar and Rekleitis, ICRA 2011]

- Follow the Euler tour
- Use simple coverage strategy for cells
- Note: Cells are visited once or twice

[^2]Robotic Cleaning of 3D Surfaces
[Hess et al., IROS 2012]

- Goal: Cover entire surface while minimizing trajectory length in configuration space

- Approach:
- Discretize 3D environment into patches
- Build a neighborhood graph
- Formulate the problem as generalized TSP (GTSP)

Robotic Cleaning of 3D Surfaces [Hess et al., IROS 2012] View from the robot camera	Lessons Learned Today - How to generate plans that are robust to uncertainty in sensing and locomotion - How to explore an unknown environment - With a single robot - With a team of robots - How to generate plans that fully cover known environments
Video: SFLY Final Project Demo (2012) sFly Swarm of Micro Flying Robots http://www.sfly.org/	

(tit) ${ }_{\text {compler }}^{\substack{\text { coision Group } \\ \text { Prof Daniel lemeis }}}$	Agenda for Today - Course Evaluation - Scientific research: The big picture - Best practices in experimentation - Datasets, evaluation criteria and benchmarks - Time for questions
Visual Navigation for Flying Robots Experimentation, Evaluation and Benchmarking Dr. Jürgen Sturm	
Course Evaluation - Much positive feedback - thank you!!! - We are also very happy with you as a group. Everybody seemed to be highly motivated! - Suggestions for improvements (from course evaluation forms) - Workload was considered a bit too high \rightarrow ECTS have been adjusted to 6 credits - ROS introduction lab course would be helpful \rightarrow Will do this next time - Any further suggestions/comments?	Scientific Research - General Idea 1. Observe phenomena 2. Formulate explanations and theories 3. Test them
Scientific Research - Methodology 1. Generate an idea 2. Develop an approach that solves the problem 3. Demonstrate the validity of your solution 4. Disseminate your results 5. At all stages: iteratively refine	Scientific Research in Student Projects - How can you get involved in scientific research during your study?

Scientific Research in Student Projects

- How can you get involved in scientific research during your study?
- Bachelor lab course (10 ECTS)
- Bachelor thesis (15 ECTS)
- Graduate lab course (10 ECTS)
- Interdisciplinary project (16 ECTS)
- Master thesis (30 ECTS)
- Student research assistant (10 EUR/hour, typically 10 hours/week)

Step 1: Generate the Idea

- Be creative
- Follow your interests / preferences
- Examples:
- Research question
- Challenging problem
- Relevant application
- Promising method (e.g., try to transfer method from another field)

Step 2: Develop a Solution

- Practitioner
- Start programming
- Realize that it is not going to work, start over, ...
- When it works, formalize it (try to find out why it works and what was missing before)
- Empirically verify that it works
- Theorist
- Formalize the problem
- Find suitable method
- (Theoretically) prove that it is right
- (If needed) implement a proof-of-concept
so don't worry! Technology evolves very fast...

Step 3: Validation

- What are your claims?
- How can you prove them?
- Theoretical proof (mathematical problem)
- Experimental validation
- Qualitative (e.g., video)
- Quantitative (e.g., many trials, statistical significance)
- Compare and discuss your results with respect to previous work/approaches

Step 4: Dissemination

- Good solution/expertise alone is not enough
- You need to convince other people in the field
- Usual procedure:

1. Write research paper (usually 6-8 pages) ${ }^{3.6}$ month
2. Submit PDF to an international conference or journal
3. Paper will be peer-reviewed 3.6 month
4. Improve paper (if necessary)
5. Give talk or poster presentation at conference 15 min.
6. Optionally: Repeat step $1-5$ until PhD © ${ }^{-}$-5 years

O A STORY TOLD IN FILE NAMES:			- \square
Location: D C: \user\research\data			\checkmark
Filename -	Date Modified	Size	Type
4t data_2010.05.28_test.dat	3:37 PM 5/28/2010	420 KB	DAT file
[1:3 data_2010.05.28_re-test.dat	4:29 PM 5/28/2010	421 KB	DAT file
눈 data_2010.05.28_re-re-test.dat	5:43 PM 5/28/2010	420 KB	DAT file
눌 data_2010.05.28_calibrate.dat	7:17 PM 5/28/2010	1,256 KB	DAT file
6 data_2010.05.28_huh??.dat	7:20 PM 5/28/2010	30 KB	DAT file
눈 data_2010.05.28_WTF.dat	9:58 PM 5/28/2010	30 KB	DAT file
6 6 data_2010.05.29_aaarrrgh.dat	12:37 AM 5/29/2010	30 KB	DAT file
눈 data_2010.05.29_\#\$@**!!.dat	2:40 AM 5/29/2010	0 KB	DAT file
눈 data_2010.05.29_crap.dat	3:22 AM 5/29/2010	437 KB	DAT file
6 data_2010.05.29_notbad.dat	4:16 AM 5/29/2010	670 KB	DAT file
[6] data_2010.05.29_woohoo!! dat	4:47 AM 5/29/2010	1,349 KB	DAT file
난 data_2010.05.29_USETHISONE.dat	5:08 AM 5/29/2010	2,894 KB	DAT file
橉 analysis_graphs.xls	7:13 AM 5/29/2010	455 KB	XLS file
悃 ThesisOutlinel.doc	7:26 AM 5/29/2010	38 KB	DOC file
© Notes_Meeting_with_ProfSmith.bxt	11:38 AM 5/29/2010	$1,673 \mathrm{~KB}$	TXT file
- JUNK...	2:45 PM 5/29/2010		Folder
[4] data_2010.05.30_startingover.dat	8:37 AM 5/30/2010	420 KB	DAT file
< [http://www.phdcomics.com]			
Type: Ph.D Thesis Modifed: too many times	Copyright: Jorge Cham	www.phdc	mics.com

Scientific Research

- This was the big picture
- Today's focus is on best practices in experimentation
- What do you think are the (desired) properties of a good scientific experiment?

	${ }^{15}$

- Reproducibility is sometimes not easy to guarantee
- Any ideas why?

Step 5: Refinement

- Discuss your work with
- Your colleagues
- Your professor
- Other colleagues at conferences
- Improve your approach and evaluation
- Adopt notation to the standard
- Get additional references/insights
- Conduct more/additional experiments
- Simplify and generalize your approach
- Collaborate with other people (in other fields)

Dr. Jürgen Sturm, Computer Vision Group, TUM

What are the desired properties of a good scientific experiment?

- Reproducibility / repeatability
- Document the experimental setup
- Choose (and motivate) an your evaluation criterion
- Experiments should allow you to validate/falsify competing hypotheses

Current trends:

- Make data available for review and criticism
- Same for software (open source)

Visual Navigation for Flying Robots 16 Dr. Jürgen Sturm, Computer Vision Group, TUM

Challenges

- Randomized components/noise (beat with the law of large numbers/statistical tests)
- Experiment requires special hardware
- Self-built, unique robot
- Expensive lab equipment
- ...
- Experiments cost time
- "(Video) Demonstrations will suffice"
- Technology changes fast

Benchmarks

- Effective and affordable way of conducting experiments
- Sample of a task domain
- Well-defined performance measurements
- Widely used in computer vision and robotics
- Which benchmark problems do you know?

Example Benchmark Problems

Computer Vision

- Middlebury datasets (optical flow, stereo, ...)
- Caltech-101, PASCAL (object recognition)
- Stanford bunny (3d reconstruction)

Robotics

- RoboCup competitions (robotic soccer)
- DARPA challenges (autonomous car)
- SLAM datasets

Image Denoising: Lenna Image

- 512×512 pixel standard image for image compression and denoising
- Lena Söderberg, Playboy magazine Nov. 1972
- Scanned by Alex Sawchuck at USC in a hurry for a conference paper

http://www.cs.cmu.edu/~chuck/lennapg/

RoboCup Initiative

- Evaluation of full system performance
- Includes perception, planning, control, ...
- Easy to understand, high publicity
- "By mid-21st century, a team of fully autonomous humanoid robot soccer players shall win the soccer game, complying with the official rule of the FIFA, against the winner of the most recent World Cup."

Object Recognition: Caltech-101

- Pictures of objects belonging to 101 categories
- About 40-800 images per category
- Recognition, classification, categorization

22

RoboCup Initiative

SLAM Evaluation

- Intel dataset: laser + odometry [Haehnel, 2004]
- New College dataset: stereo + omni-directional vision + laser + IMU [Smith et al., 2009]
- TUM RGB-D dataset [sturm et al., 2011/12]
- ...

TUM RGB-D Dataset

[Sturm et al., RSS RGB-D 2011; Sturm et al., IROS 2012]

- RGB-D dataset with ground truth for SLAM evaluation
- Two error metrics proposed (relative and absolute error)
- Online + offline evaluation tools
- Training datasets (fully available)
- Validation datasets (ground truth not publicly available to avoid overfitting)

Recorded Scenes

- Various scenes (handheld/robot-mounted, office, industrial hall, dynamic objects, ...)
- Large variations in camera speed, camera motion, illumination, environment size, ...

Dataset Acquisition

- Motion capture system
- Camera pose (100 Hz)
- Microsoft Kinect
- Color images (30 Hz)
- Depth maps (30 Hz)
- IMU (500 Hz)
- External video camera (for documentation)

Calibration

Calibration of the overall system is not trivial:

1. Mocap calibration
2. Kinect-mocap calibration
3. Time synchronization

Calibration Step 2: Mocap-Kinect

- Need to find transformation between the markers on the Kinect and the optical center
- Special calibration board visible both by Kinect and mocap system (manually gauged)

Calibration - Validation

- Intrinsic calibration
- Extrinsic calibration color + depth
- Time synchronization color + depth
- Mocap system slowly drifts (need re-calibration every hour)
- Validation experiments to check the quality of calibration
- 2 mm length error on 2 m rod across mocap volume
- 4mm RMSE on checkerboard sequence

Calibration Step 3: Time Synchronization

- Assume a constant time delay between mocap and Kinect messages
- Choose time delay that minimizes reprojection error during checkerboard calibration

Visual Navigation for Flying Robots

time offset [ms]

Example Sequence: Freiburg1/XYZ

Sequence description (on the website):
"For this sequence, the Kinect was pointed at a typical desk in an office environment. This sequence contains only translatory motions along the principal axes of the Kinect, while the orientation was kept (mostly) fixed. This sequence is well suited for debugging purposes, as it is very simple. "
Visual Navigation for Flying Robots
Dr. Jürgen Sturm, Computer Vision Group, TUM

Dataset Website

- In total: 39 sequences (19 with ground truth)
- One ZIP archive per sequence, containing
- Color and depth images (PNG)
- Accelerometer data (timestamp ax ay az)
- Trajectory file (timestamp tx ty ty qx qy qz qw)
- Sequences also available as ROS bag and MRPT rawlog
http://vision.in.tum.de/data/datasets/rgbd-dataset
\qquad

What Is a Good Evaluation Metric?

- Compare camera trajectories
- Ground truth trajectory
$Q_{1}, \ldots, Q_{n} \in \operatorname{SE}(3)$
- Estimate camera trajectory $\quad P_{1}, \ldots, P_{n} \in \mathrm{SE}(3)$
- Two common evaluation metrics
- Relative pose error (drift per second)
- Absolute trajectory error (global consistency)

Absolute Trajectory Error (ATE)

- Measures the global error
- Requires pre-aligned trajectories
- Recommended for SLAM evaluation

$$
E_{i}:=Q_{i}^{-1} S P_{i}
$$

Visual Navigation for Flying Robots 47

Summary - TUM RGB-D Benchmark

- Dataset for the evaluation of RGB-D SLAM systems
- Ground-truth camera poses
- Evaluation metrics + tools available

Discussion on Benchmarks

Pro:

- Provide objective measure
- Simplify empirical evaluation
- Stimulate comparison

Con:

- Introduce bias towards approaches that perform well on the benchmark (overfitting)
- Evaluation metrics are not unique (many alternative metrics exist, choice is subjective)

Three Phases of Evolution in Research

- Novel research problem appears
(e.g., market launch of Kinect, quadrocopters, ...)
- Is it possible to do something at all?
- Proof-of-concept, qualitative evaluation
- Consolidation
- Problem is formalized
- Alternative approaches appear
- Need for quantitative evaluation and comparison
- Settled
- Benchmarks appear
- Solid scientific analysis, text books, ...

Final Exam

- Oral exam in teams (2-3 students)
- At least 15 minutes per student \rightarrow individual grades
- Questions will address
- Your project
- Material from the exercise sheets
- Material from the lecture
\qquad

Exercise Sheet 6

- Prepare final presentation
- Proposed structure: 4-5 slides

1. Title slide with names + motivating picture
2. Approach
3. Results (video is a plus)
4. Conclusions (what did you learn in the project?)
5. Optional: Future work, possible extensions

- Hand in slides before Tue, July 17, 10am (!)

[^0]: sual Navigation for Flying Robots $60 \quad$ Dr. Jürgen Sturm, Computer Vision Group, TUM

[^1]: Visual Navigation for Flying Robots

[^2]: Visual Navigation for Flying Robots

