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Visual-Inertial Mapping with Non-Linear Factor
Recovery

Vladyslav Usenko1, Nikolaus Demmel1, David Schubert1, Jörg Stückler2 and Daniel Cremers1

Abstract—Cameras and inertial measurement units are com-
plementary sensors for ego-motion estimation and environment
mapping. Their combination makes visual-inertial odometry
(VIO) systems more accurate and robust. For globally consistent
mapping, however, combining visual and inertial information
is not straightforward. To estimate the motion and geometry
with a set of images large baselines are required. Because of
that, most systems operate on keyframes that have large time
intervals between each other. Inertial data on the other hand
quickly degrades with the duration of the intervals and after
several seconds of integration, it typically contains only little
useful information.

In this paper, we propose to extract relevant information for
visual-inertial mapping from visual-inertial odometry using non-
linear factor recovery. We reconstruct a set of non-linear factors
that make an optimal approximation of the information on the
trajectory accumulated by VIO. To obtain a globally consistent
map we combine these factors with loop-closing constraints using
bundle adjustment. The VIO factors make the roll and pitch
angles of the global map observable, and improve the robustness
and the accuracy of the mapping. In experiments on a public
benchmark, we demonstrate superior performance of our method
over the state-of-the-art approaches.

I. INTRODUCTION

Visual-inertial odometry (VIO) is a popular approach for
tracking the motion of a camera in application domains such as
robotics or augmented reality. By combining visual and IMU
measurements, one can exploit the complementary strengths
of both sensors and thereby increase accuracy and robustness.
Commonly, the optimization of camera trajectory and map is
performed locally on a small window of recent camera frames
and IMU measurements. This approach, however, is inevitably
prone to drift in the estimates.

Globally consistent optimization for visual-inertial mapping
is less explored in the computer vision community. While
in principle the optimization could be formulated as bundle
adjustment with additional IMU measurements, this approach
would quickly become computationally infeasible due to the
high number of frames which would lead to a large num-
ber of optimization parameters in a naive formulation. To
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Fig. 1: Orthographic top-down projection of the map (MH 05
sequence of the EuRoC dataset [5]) rendered using the esti-
mated gravity direction. To obtain a gravity-aligned globally
consistent map, non-linear factors are recovered from the
marginalization prior of the VIO and combined with keypoint-
based bundle adjustment. Green lines visualize keyframe con-
nections resulting from bundle adjustment factors and red lines
connections from the recovered relative pose factors. Addi-
tionally each keyframe has a recovered factor that penalizes
deviation from the gravity direction observed in VIO.

keep the computational burden in bounds, bundle adjustment
subsamples the high-frame rate images of the camera to a
smaller set of keyframes. The common choice in VIO is to
preintegrate IMU measurements between consecutive frames.
If we select keyframes temporally far apart to make the
optimization efficient, the preintegrated IMU measurements
provide only little information to constrain the trajectory due
to the accumulated sensor noise. The small frame rate also
affects the quality of the estimated velocities and biases from
visual and inertial cues which are required for pose prediction
using preintegrated IMU measurements.

We propose a novel approach that formulates visual-inertial
mapping as bundle adjustment on a high-frame-rate set of
visual and inertial measurements. Instead of directly opti-
mizing the camera trajectory for all frames, we propose a
hierarchical approach which first recovers a local VIO estimate
at the frame rate of the camera. Once keyframes are removed
and marginalized from the current local VIO optimization
window, we extract non-linear factors [15] that approximate
the accumulated visual-inertial information about the camera
motion between keyframes. The keyframes and non-linear
factors are subsequently used on the global bundle-adjustment
layer.

For the VIO layer, our method uses image features designed
for fast and accurate tracking, while for the mapping layer
we employ distinctive but lighting and viewpoint invariant
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keypoints that are suitable for loop closing. With this, our
approach can leverage information from the IMU and short-
term visual tracking at high frame rates together with keypoint
matching and loop-closing at low frame rates for globally
consistent mapping (Fig. 1). The factors also help to keep
the map gravity-aligned, bridge between frames that do not
have enough visual information. Our approach also makes the
optimization problem smaller, since we do not have to estimate
velocities and biases.

In summary, our contributions are:
• We propose a novel two-layered visual-inertial map-

ping approach that integrates keypoint-based bundle-
adjustment with inertial and short-term visual tracking
through non-linear factor recovery.

• As the first layer of our mapping approach we propose a
VIO system which outperforms the state-of-the-art meth-
ods in terms of trajectory accuracy on the majority of the
evaluated sequences. This is achieved by carefully com-
bining appropriate components (patch tracking, landmark
representation, first-estimate Jacobians, marginalization
scheme) as detailed in Sec. IV.

• Unlike other state-of-the-art systems that use preinte-
grated IMU measurements also for mapping, we subsume
high-frame rate visual-inertial information in non-linear
factors extracted from the marginalization prior of the
VIO layer. This results not only in a smaller optimization
problem but also in better pose estimates in the resulting
gravity aligned map.

We encourage the reader to watch the demonstration video
and inspect the open-source implementation of the system,
which is available at:

https://vision.in.tum.de/research/vslam/basalt

II. RELATED WORK

Visual-inertial odometry: Early methods for visual-
inertial odometry are primarily filter-based [11], [18]. In
tightly integrated filters, the prediction step typically propa-
gates the current camera state estimate using the IMU mea-
surements. The state is recursively corrected based on the
camera images. A significant drawback of filters is that the
linearization point for the non-linear measurement and state
transition models cannot be changed, once a measurement
is integrated. Fixed-lag smoothers (a.k.a. optimization-based
approaches) such as [13], [27] relinearize at the current
states in a local optimization window of recent frames. The
visual-inertial state estimation is formulated as a full bundle
adjustment (BA) over keyframes and IMU measurements. The
problem is reduced to a computationally manageable size by
marginalization of old frames up to the recent set in the opti-
mization window. The continuous relinearization, windowed
optimization and maintenance of the marginalization prior
increase the accuracy of the methods. The above methods
need to discard keypoints and observations that are observed
in marginalized keyframes in order to maintain the sparse
structure of the marginalization prior. Hsiung et al. [9] apply
non-linear factor recovery to achieve a sparse marginalization

prior without discarding information about observed keypoints.
This way, the approach can further refine the keypoints and
achieve higher accuracy, but in contrast to our work it is
limited to local BA.

Visual-inertial mapping: Only few works have tackled
globally consistent mapping from visual and inertial measure-
ments. Kasyanov et al. [12] add a pose-graph optimization
layer with loop-closing on top of a keyframe-based visual-
inertial odometry method [13]. The pose graph is built from the
keyframes of the VIO and their relative pose estimates. In [19],
the authors add inertial measurements to a keyframe-based
SLAM system through IMU preintegration. The IMU mea-
surements are preintegrated into a set of pseudo-measurements
between keyframes. They notice that the accuracy of prein-
tegrated measurements degrades over time and restrict the
time between keyframes to 0.5 seconds in local BA and 3
seconds in global BA. A further shortcoming of the method
is its requirement of estimating the camera velocity and
IMU biases at each keyframe which is less well constrained
through visual measurements than in our approach due to
the strong temporal subsampling into keyframes. Schneider et
al. [24] follow a similar approach in which preintegrated IMU
measurements are inserted into the optimization. The approach
in [20] proposes a combination of VIO and 4 degree-of-
freedom (DoF) pose optimization for visual-inertial mapping.
They fix 2 DoF (roll and pitch) and optimize only for the
others. We also constrain roll and pitch from visual-inertial
measurements. However, we extract non-linear factors in a
probabilistic formulation which account for uncertainties in
those values and are traded off with other information in the
global probabilistic optimization.

III. PRELIMINARIES

In this paper, we write matrices as bold capital letters
(e.g. R) and vectors as bold lowercase letters (e.g. ξ). Rigid-
body poses are represented as (R,p) ∈ SO(3) × R3 or as
transformation matrices T ∈ SE(3) when needed. Increment-
ing a rotation R by an increment ξ ∈ R3 is defined as
R ⊕ ξ = Exp(ξ)R. The difference between two rotations
R1 and R2 is calculated as R1 	R2 = Log(R1R

−1
2 ) such

that (R ⊕ ξ) 	 R = ξ. Here we use Exp: R3 → SO(3),
which is a composition of the hat operator (R3 → so(3)) and
the matrix exponential (so(3) → SO(3)) and maps rotation
vectors to their corresponding rotation matrices, and its inverse
Log : SO(3)→ R3. For all other variables, such as translation,
velocity and biases, we define ⊕ and 	 as regular addition and
subtraction.

In the following we will use a state s that is defined as a
tuple of several rotation and vector variables, and a function
r(s) that depends on it and can also produce rotations and
vectors as the result. An increment ξ ∈ Rn is a stacked vector
with all the increments of the variables in s. Then, the Jacobian
of the function with respect to the increment is defined as

Jr(s) = lim
ξ→0

r(s⊕ ξ)	 r(s)

ξ
. (1)

Here, s⊕ ξ denotes that each component in s is incremented
with the corresponding segment in ξ using the appropriate

https://vision.in.tum.de/research/vslam/basalt
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definition of the ⊕ operator, and similarly for 	. The limit is
done component-wise, such that the Jacobian is a matrix. For
Euclidean quantities, this definition is just a normal derivative,
with an extension for rotations, both as function value and as
function argument. For more details and possible alternative
formulations we refer the reader to [2], [4], [7].

In non-linear least squares problems, we minimize functions
of the form

E(s) =
1

2
r(s)>Wr(s) , (2)

which is a squared norm of the sum of residuals with block-
diagonal weight matrix W. In this case, r(s) is purely
vector-valued. Near the current state s we can use a linear
approximation of the residual, which leads to

E(s⊕ ξ) = E(s) + ξ>J>r(s)Wr(s) +
1

2
ξ>J>r(s)WJr(s)ξ .

(3)

The optimum of this approximated energy can be attained
using the Gauss-Newton increment

ξ∗ = −(J>r(s)WJr(s))
−1J>r(s)Wr(s) . (4)

With this, we can iteratively update the state si+1 = si ⊕ ξ∗

until convergence.

IV. VISUAL-INERTIAL ODOMETRY

We formulate the incremental motion tracking of the
camera-IMU setup over time as fixed-lag smoothing. First,
we use patch-based optical flow to track a sparse set of points
in the 2D image plane between consecutive frames. This
information is then used in a bundle-adjustment framework
which for every frame minimizes an error that consists of point
reprojection and IMU propagation terms. To maintain a fixed
parameter size of the optimization problem we marginalize
out old states. In the remainder of this section we will discuss
these stages in more detail.

A. KLT Tracking
As a first step of our algorithm we detect a sparse set of

keypoints in the frame using the FAST [22] corner detector. To
track the motion of these points over a series of consecutive
frames we use sparse optical flow based on KLT [14]. To
achieve fast, accurate and robust tracking we combine the
inverse-compositional approach as described in [1] with a
patch dissimilarity norm that is invariant to intensity scaling.
Several authors suggested zero-normalized cross-correlation
(ZNCC) for illumination-invariant optical flow [17], [25], but
we use locally-scaled sum of squared differences (LSSD)
defined in [21] which is computationally less expensive than
alternatives.

We formulate the patch tracking problem as estimating the
transform T ∈ SE(2) between two corresponding patches in
two consecutive frames that minimizes the differences between
the patches according to the selected norm. Essentially, we
minimize a sum of squared residuals, where every residual is
defined as

ri(ξ) =
It+1(Txi)

It+1

− It(xi)

It
∀xi ∈ Ω. (5)

Fig. 2: Example of KLT tracks estimated by our system.
Despite changes in exposure time the proposed method is
able to estimate the warp in SE(2) between the patches in
the images.

Here, It(x) is the intensity of image t at pixel location x.
The set of image coordinates that defines the patch is denoted
Ω and the mean intensity of the patch in image t is It. A
visualization of the patch and tracking results is shown in
Fig. 2.

To achieve robustness to large displacements in the image
we use a pyramidal approach, where the patch is first tracked
on the coarsest level and then on increasingly finer levels. For
outlier filtering, instead of an absolute threshold on the error,
we track the patches from the current frame to the target frame
and back to check consistency. Points that do not return to
the initial location with the second tracking are considered as
outliers and discarded.

B. Visual-Inertial Bundle Adjustment

To estimate the motion of the camera we combine error
terms based on tracked feature locations from KLT tracking
with IMU error terms based on preintegrated IMU measure-
ments [8].

We use the following coordinate frames throughout the
paper: W is the world frame, I is the IMU frame and Ci is
the frame of camera i, where i is the index of the camera
in a stereo setup. We estimate transformations TWI ∈ SE(3)
from IMU to world coordinate frame. The transformations
TICi

from camera frame i to IMU frame and the projection
functions πi are assumed to be static and known from calibra-
tion. For the formulation of reprojection errors we denote the
transformations from camera i to world by TWCi . Those do not
constitute additional optimization variables and are calculated
using TWI and TICi

in practice.
At different points in time, we optimize a state

s = {sk, sf, sl} , (6)

where sk contains IMU poses for n older keyframes, sf
contains IMU poses, velocities and biases of the m most recent
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Fig. 3: Geometric interpretation of stereographic projection
used to represent unit vectors. The two parameters define a
point in the XY -plane of the coordinate system shown in blue.
To obtain the corresponding 3D unit vector we cast a ray from
(0 0 −1)> and find an intersection with the unit sphere shown
in black. Three example points are visualized in red, green and
yellow, with dashed lines representing the rays intersecting
with the sphere and arrows showing the resulting unit vectors.

frames, which possibly are also keyframes if they host land-
marks, and sl contains landmarks. A graphical representation
of the problem is shown in Fig. 5 (a). Landmarks are stored
relative to the keyframe where they were observed for the
first time [16] and defined by a unit-length direction vector in
the coordinate frame of the camera and an inverse distance to
the landmark [6]. In the proposed system only keyframes host
landmarks, which distinguishes them from regular frames.

1) Representation of Unit Vectors in 3D: In order to avoid
the necessity of additional constraints for the optimization
and to keep the number of optimiziation variables small, we
parametrize the bearing vector in 3D space using a minimal
representation, which is two-dimensional. In [3] the authors
provide an extensive review of possible parametrizations and
suggest a new parametrization based on SO(3) rotations that
yields simple derivatives with respect to 2D increments.

In this work we use a parametrization based on stereo-
graphic projection that given 2D coordinates (u, v)> generates
a unit-length bearing vectorxy

z

 =

 ηu
ηv
η − 1

 , η =
2

1 + u2 + v2
. (7)

This parametrization is efficient as it only uses simple op-
erations such as multiplication and division (compared to
trigonometric operations needed in [6]) and is defined for all u
and v. A geometric interpretation is shown in Fig. 3. The only
direction vector that cannot be represented with finite u, v is
the negative Z-direction

(
0 0 −1

)>
. However, this is not a

drawback in practice, as cameras usually have a limited field
of view and cannot see points behind them.

2) Reprojection Error: The first cue we can use for motion
estimation is the reprojection error. When point i that is hosted
in frame h(i) is detected in target frame t at image coordinates
zit, the residual is defined as

rit = zit − πc(t)(T−1
t Th(i)qi(u, v, d)) , (8)

qi(u, v, d) =
(
x(u, v) y(u, v) z(u, v) d

)>
, (9)

where c(t) is the index of the camera used to take frame t. The
pose Tt denotes TWCc(t)

at the time when frame t has been

taken, and similarly for Th(i). The first three entries of the
homogeneous point coordinates qi(u, v, d) are computed from
the minimal representation (u, v) as described in Sec. IV-B1,
with an additional fourth entry d, the inverse distance. Since
the projection function is independent of scale we do not have
to normalize qi, which makes this formulation numerically
stable even when d is close or equal to zero.

3) IMU Error: The second cue for motion estimation is
the IMU data. To deal with high frequency of the IMU
measurements we preintegrate several consecutive IMU mea-
surements into a pseudo-measurement. When adding an IMU
factor between frame i and frame j, we compute pseudo-
measurement ∆s = (∆R,∆v,∆p) similar to [8], which we
can use to formulate the residuals as

r∆R = Log
(

∆R̃R>j Ri

)
, (10)

r∆v = R>i (vj − vi − g∆t)−∆ṽ , (11)

r∆p = R>i (pj − pi −
1

2
g∆t2)−∆p̃ , (12)

where g is the gravity vector and R and p denote the rota-
tion and translation components of TWI, respectively. These
residuals have to be weighted with appropriate covariance
matrix Σij , which can be calculated recursively. For more
detailed information about the underlying physical model of
the IMU and preintegration theory we refer the reader to the
supplementary material.

4) Optimization and Partial Marginalization: For each new
frame we minimize a non-linear energy that consists of repro-
jection terms, IMU terms and a marginalization prior Em

E =
∑
i∈P

t∈obs(i)

r>itΣ
−1
it rit +

∑
(i,j)∈C

r>ijΣ
−1
ij rij + Em. (13)

The reprojection errors are summed over the set of points P
and for each point i over the set obs(i) of frames where the
point is observed, including its host frame. The set C contains
pairs of frames which are connected by IMU factors.

The energy E is optimized using the Gauss-Newton algo-
rithm. To constrain the problem size we fix the number of
keyframe poses and consecutive states that we optimize at
every iteration. When a new frame is added, there are n pose-
only keyframes in sk and the m newest frames including the
newly added one in sf. After optimizing, we perform a partial
marginalization of the state to prevent the problem size from
growing.

Two possible scenarios for marginalization are shown in Fig.
5. In the first one we marginalize out the oldest non-keyframe.
In this case we drop the landmark factors that have this frame
as a target to maintain the sparsity of the problem. In the
second case we have a new keyframe, so we marginalize out
velocity and biases for this frame and one old keyframe with
corresponding landmarks.

In both cases the marginalization is done on the linearized
Markov blanket of the variables we want to remove, where
the Markov blanket is a collection of incident states to those
variables. The linearization H and b represent a distribution
of the estimated state in the vector space of the increment ξ.
If we split the increment ξ = [ξ>α , ξ

>
β ]> into variables ξα to
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Fig. 4: Visual-inertial odometry subsystem proposed in Section IV. Projections of the landmarks with color-coded inverse
distance used for estimating the position of the current frame are shown on the left. The results of local visual-inertial bundle
adjustment are shown on the right. Keyframe poses with the associated landmarks are visualized in blue, current states and the
estimated trajectory are visualized in red. Information about the keyframe poses in the local window is approximated using a
set of non-linear factors as described in Section V and reused for global mapping.

stay in the system and variables ξβ to be marginalized, we
can compute the parameters of the new distribution using the
Schur complement,

Hm
αα = Hαα −HαβH−1

ββHβα , (14)

bm
α = bα −HαβH−1

ββbβ , (15)

where we have split the original H and b into

H =

[
Hαα Hαβ

Hβα Hββ

]
, b =

[
bα
bβ

]
. (16)

Hm
αα and bm

α now define an energy term that only depends on
ξα and can be added to the total energy at the next iteration.

We use first-estimate Jacobians [10] to maintain the
nullspace properties of the linearized marginalization prior.
As soon as a variable becomes a part of the marginalization
prior, its linearization point is fixed, and the Jacobian used
to calculate H and b is evaluated at this linearization point,
while the residuals are calculated at the current state estimate.
Residuals already in the marginalization term have to be
linearly approximated, thus not bm

α, but bm
α+Hm

ααδα is added
to the Gauss-Newton optimization once ξα deviates by δα
from the state used to calculate the residuals in bm

α.

V. VISUAL-INERTIAL MAPPING

The fixed-lag smoothing method for visual-inertial odome-
try (Fig. 4) presented in the previous section accumulates drift
in the estimate due to the fixed linearization points outside the
optimization window. A typical approach to eliminate such
drift is to detect loop closures and incorporate loop-closing
constraints into the optimization. We propose a two-layered
approach which runs our visual-inertial odometry on the lower
layer and bundle-adjustment on the visual-inertial mapping
layer, where we additionally use non-linear factors that sum-
marize the keyframe pose information from the odometry
layer. BA optimizes the camera poses of keyframes and po-
sitions of keypoints. We implicitly detect loop closures using
keypoint matching and achieve globally consistent mapping.

A. Global Map Optimization

To get statistically independent observations we detect and
match ORB [23] features (distinct from VIO points) between

the keyframes in the global map optimization. This allows us
to use the reprojection error function as defined in Eq. (8).
Combining this reprojection error with the error terms from
the recovered non-linear factors yields the objective function:

EG(s) =
∑
i∈P

t∈obs(i)

r>itΣ
−1
it rit + Enfr(s), (17)

where Enfr(s) collects the error terms by the recovered non-
linear factors. These factors and their recovery are detailed in
the following. The state s that we optimize on this global op-
timization layer includes the keyframe poses and the positions
of the new landmarks (parametrized as in Sec. IV-B1).

We interface the global map optimization with the VIO
layer at the keyframe poses. When a keyframe is marginalized
out from the VIO we save the linearization of the Markov
blanket (Fig. 5 (c)) and marginalize all other variables except
of keyframe poses. From this marginalization prior, we re-
cover a set of non-linear factors on the keyframe poses that
approximate the distribution stored in it.

B. Non-Linear Factor Recovery

Non-linear factor recovery (NFR [15]) approximates a dense
distribution stored in the linearized Markov blanket of the
original factor graph with a different set of non-linear factors
that yield a sparse factor graph topology. While the initial
aim of NFR is to keep the computational complexity of
SLAM optimization bounded, we use it to transfer information
accumulated during VIO to our globally consistent visual-
inertial map optimization.

By linearization of the residual function of a non-linear least
squares problem Eq. (2), we obtain a multivariate Gaussian
distribution p(s) ∼ N(µo,H

−1
o ) in which the mean µo equals

the state estimate. We want to construct another distribution
pa(s) ∼ N(µa,H

−1
a ) that well approximates the original

distribution with a sparser factor graph topology.
We follow NFR [15] and minimize the Kullback-Leibler

divergence (KLD) between the recovered distribution and the
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Fig. 5: Factor graphs. (a) After marginalizing a frame, the system consists of n older keyframes K1 . . .Kn and the m − 1
most recent frames F1 and F2 (which could potentially also host landmarks and hence be keyframes). After a new frame has
been added, the oldest velocity v and the oldest bias b are marginalized. If they do not belong to a keyframe (b), the whole
frame including its pose T is marginalized. If they belong to a keyframe (c), another keyframe is selected for marginalization,
including the landmarks hosted in it and its pose. In both cases, reprojection factors where the target frame is the marginalized
frame are dropped. In the latter case, reprojection factors from the marginalized frame to F2 are dropped to allow relinearization.
Note that not all possible combinations of host and target frames for reprojection factors are shown.
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… …

Fig. 6: Visualization of non-linear factor recovery. Left:
Densely connected factor from marginalization saved from the
VIO before removing a keyframe pose. Right: Extracted non-
linear factors that approximate the distribution stored in the
original factor.

original distribution. More formally, we minimize

DKL(p(s)||pa(s)) =

1

2

(
〈Ha,Σo〉 − log det(HaΣo) + ||H

1
2
a (µa − µo)||2 − d

)
,

(18)

where Σo = H−1
o and d is constant.

For the ith non-linear factor that we want to recover, we
need to define a residual function such that ri(s, zi) = ε with
ε ∼ N(0,H−1

i ). NFR estimates the pseudo measurements zi
and information matrices Hi for the factors. Choosing zi such
that ri(µo, zi) = 0 induces µa = µo which makes the third
term of (18) vanish. To estimate Hi we define

Jr =


...

Ji
...

Hr =


. . . 0

Hi

0
. . .

 , (19)

where Jr stacks the Jacobians of the defined residual functions
with respect to the state, and Hr is a block diagonal matrix that
consists of the Hi for the corresponding residual functions.

This allows us to write Ha = J>r HrJr, and consequently, we
can recover the information matrices Hi by minimizing

DKL(Hr) = 〈J>r HrJr,Σo〉 − log det(J>r HrJr). (20)

For full-rank and invertible Jr, [15], [9] showed that the
following closed-form solution exists,

Hi = ({JrΣoJ
>
r }i)−1, (21)

where {}i denotes the corresponding diagonal block.

C. Non-Linear Factors for Distribution Approximation

When we need to marginalize out a keyframe as shown in
Fig. 5 (c), we save the current linearization and marginalize out
everything except the keyframe poses. This gives us a factor
that densely connects all keyframe poses in the optimization
window. We use it to recover non-linear factors between the
marginalized keyframe and all other keyframes as shown in
Fig. 6. We define the following residual functions:

rrel(s, zrel) = Log(zrelT
−1
j Ti), (22)

rrp(s, zrp) = bzrpR
−1
i (0, 0,−1)>cxy, (23)

rpos(s, zpos) = zpos − pi, (24)
ryaw(s, zyaw) = bRizyawcy, (25)

where with bcxy we denote x and y components of the vector
and with z we denote the recovered measurements from the
estimated state at the time of linearization. In our case zrel =
T−1
i Tj ∈ SE(3), zrp = Ri ∈ SO(3), zpos = pi ∈ R3 and

zyaw = R−1
i

(
1 0 0

)> ∈ R3.
We recover pairwise relative-pose factors between the

keyframe that we will remove and all other current VIO
keyframes. For that keyframe we also recover roll-pitch,
absolute position and yaw factors (Fig. 6). This gives us a
full-rank invertible Jacobian Jr which means that we can use
Eq. (21) for recovering information matrices for the factors.

Since yaw and absolute position are 4 unobservable states
of the VIO, the only information we have there comes from
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Sequence MH 01 MH 02 MH 03 MH 04 MH 05 V1 01 V1 02 V1 03 V2 01 V2 02

VI DSO [26], mono 0.06 0.04 0.12 0.13 0.12 0.06 0.07 0.10 0.04 0.06
OKVIS [13] mono 0.34 0.36 0.30 0.48 0.47 0.12 0.16 0.24 0.12 0.22
OKVIS [13] stereo 0.23 0.15 0.23 0.32 0.36 0.04 0.08 0.13 0.10 0.17

VINS FUSION [20] mono 0.18 0.09 0.17 0.21 0.25 0.06 0.09 0.18 0.06 0.11
VINS FUSION [20] stereo 0.24 0.18 0.23 0.39 0.19 0.10 0.10 0.11 0.12 0.10

IS VIO [9] stereo 0.06 0.06 0.10 0.24 0.19 0.06 0.10 0.26 0.08 0.21
Proposed VIO, stereo 0.07 0.06 0.07 0.13 0.11 0.04 0.05 0.10 0.04 0.05

VI SLAM [12] mono, KF 0.25 0.18 0.21 0.30 0.35 0.11 0.13 0.20 0.12 0.20
VI SLAM [12] stereo, KF 0.11 0.09 0.19 0.27 0.23 0.04 0.05 0.11 0.10 0.18

VI ORB-SLAM [19], mono, KF 0.07 0.08 0.09 0.22 0.08 0.03 0.03 X 0.03 0.04
Pure BA, stereo, KF 0.09 0.08 0.05 0.27 0.16 0.04 0.03 X 0.04 0.04

BA + Identity Factors, stereo, KF 0.08 0.07 X 0.34 0.15 0.04 0.03 0.56 0.05 0.04
Proposed VI Mapping, stereo, KF 0.08 0.06 0.05 0.10 0.08 0.04 0.02 0.03 0.03 0.02

TABLE I: RMS ATE of the estimated trajectory in meters on the EuRoC dataset for several different methods. In the upper part
we summarize the results for the VIO methods that run optimization in a local window and estimate the pose of every camera
frame. In the lower part we evaluate mapping methods that operate on all keyframes and perform global map optimization. In
both evaluations the proposed system shows the lowest error on the majority of the sequences and outperforms the competitors.
Note: The V2 03 sequence is excluded from the comparison because it has more than 400 missing frames for one of the cameras.

the initial prior on the start pose. As we do not need this
information for the global map we drop yaw and absolute
position factors, and only take relative pose and roll-pitch
factors for the map optimization. With these factors, the energy
terms EG

nfr become

EG
nfr(s) =

∑
(i,j)∈R

r>ijHijrij +
∑
i∈P

r>i Hiri, (26)

where R is a set of all relative pose factors and P is the set
of all roll-pitch factors.

VI. EVALUATION

To evaluate the presented approach we conduct evaluation
on the EuRoC dataset [5] and compare it to other state-of-
the-art systems. We present the evaluation for both our VIO
subsystem and our full visual-inertial mapping approach. Our
VIO runs the optimization in a local window of frames and
provides a pose for every tracked frame, while the mapping
system performs global map optimization for keyframes that
were selected by the VIO. To measure the accuracy of the
evaluated systems, we use the root mean square (RMS) of
the absolute trajectory error (ATE) after aligning the estimates
with ground truth.

a) System parameters: At the KLT tracking stage the
image is divided into a regular grid with the cell size of
50 pixels. For each cell that has no point tracked from the
previous frame, one feature point with the best FAST response
is extracted (if it exceeds the threshold). With the resolution
of the EuRoC dataset it results in 80-120 features tracked by
the system at every point in time. At the VIO level we use
a window of 7 old keyframes (poses) and 3 latest temporal
states (poses, velocities and biases). The newest temporal state
is selected as a keyframe if less than 70% of the KLT features
are connected to the currently tracked points in the local map.

b) Accuracy: The results of the evaluation are summa-
rized in Table I. When considering visual-inertial odometry
methods our system shows the best performance on eight out

of ten sequences while the closest competitor (VI DSO [26])
shows the best results on five.

To evaluate the mapping part we compare it to the visual-
inertial version of ORB-SLAM [19], where the vision subsys-
tem is very similar to the one proposed in our mapping layer
(ORB keypoints). The main difference lies in the inertial part
where ORB-SLAM uses preintegrated measurements between
keyframes, while we use recovered non-linear factors that
summarize IMU and visual tracking on the VIO layer.

The proposed system clearly outperform ORB-SLAM on
the “machine hall” sequences where the large scale of the
environment results in large time intervals between keyframes.
On the “Vicon room” sequences the difference is smaller,
since the rapid motion of the MAV that carries the camera
in a small room results in many keyframes with small time
intervals between them.

Qualitative results of reconstructed maps are shown in
Fig. 1. With the proposed system we are able to reconstruct
globally consistent gravity-aligned maps and recover keyframe
poses even for segments where no matches between detected
ORB features can be estimated.

c) Factor Weighting: To evaluate the importance of the
extracted factors and their proper weighting in the final map-
ping results we consider two alternative implementations. In
the first one we do not use any factors and rely purely on
the BA with ORB features. In the second one we extract
the factors, but use identity weights (i.e. Hij = Hi = I in
Eq. (26)) for all of them, which is a typical approach for pose
graph optimization [19], [20]. The evaluation results presented
in Table I show that the system with the factor weights
recovered according to Sec. V results in better accuracy and
robustness when compared to those alternatives.

d) Timing: The main source of timing improvement for
the mapping stage is the fact that for a global optimization
requires a 2.5 smaller state (no velocity or biases) compared
to the naive IMU integration. In absolute numbers we test our
system on an Intel E5-1620 CPU (4 cores, 8 virtual cores).
Our implementation is highly parallel and utilizes all available
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Total Factor
Extraction

Keypoint
detection

Matching and
Triangulation

Optimization
(10 iterations)

52.8 3.6 6.4 23.1 19.7

TABLE II: Mean processing time in milliseconds of the
mapping subsystem on EuRoC sequences normalized (divided)
by the number of keyframes in the map.

CPU resources. For the VIO the average time per frame on
the EuRoC sequences is 7.83 ms (largest: 9.4 ms on MH 02;
smallest: 5.5 ms in V1 03). On average 11.5% of the frames
are selected as keyframes and proceed to the mapping stage.

The timing of the mapping stage is provided in Table II. In
particular, for the MH 05 sequence (see Fig. 1, 2273 stereo
frames, 114 seconds) the processing takes 19.2 seconds for
VIO and 9.7 seconds for mapping for the entire sequence
(around 4x faster than real-time playback).

VII. CONCLUSIONS

In this paper we present a novel approach for visual-
inertial mapping that combines the strengths of highly accurate
visual-inertial odometry with globally consistent keyframe-
based bundle adjustment. We achieve this in a hierarchical
framework that successively recovers non-linear factors from
the VIO estimate that summarize the accumulated inertial
and visual information between keyframes. VIO is formulated
as fixed-lag smoothing which optimizes a set of active re-
cent frames in a sliding window and keeps past information
in marginalization priors. The accumulated VIO information
between keyframes is extracted and retained for the visual-
inertial mapping when a keyframe falls outside the window
and is marginalized.

Compared to alternative approaches that use preintegrated
IMU measurements between keyframes our system shows
better trajectory estimates on a public benchmark. This for-
mulation has the potential to reduce the computational cost of
optimization by reducing the dimensionality of the state space
and enable large-scale visual-inertial mapping. Integrating
information from other sensor modalities or extending the
system for multi-camera settings are interesting directions for
future research.
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